BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21343426)

  • 1. Vacuole-localized berberine bridge enzyme-like proteins are required for a late step of nicotine biosynthesis in tobacco.
    Kajikawa M; Shoji T; Kato A; Hashimoto T
    Plant Physiol; 2011 Apr; 155(4):2010-22. PubMed ID: 21343426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clustered transcription factor genes regulate nicotine biosynthesis in tobacco.
    Shoji T; Kajikawa M; Hashimoto T
    Plant Cell; 2010 Oct; 22(10):3390-409. PubMed ID: 20959558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A PIP-family protein is required for biosynthesis of tobacco alkaloids.
    Kajikawa M; Hirai N; Hashimoto T
    Plant Mol Biol; 2009 Feb; 69(3):287-98. PubMed ID: 19002761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum.
    Dewey RE; Xie J
    Phytochemistry; 2013 Oct; 94():10-27. PubMed ID: 23953973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes.
    Shoji T; Hashimoto T
    Plant Cell Physiol; 2011 Jun; 52(6):1117-30. PubMed ID: 21576194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Jasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes.
    Shoji T; Ogawa T; Hashimoto T
    Plant Cell Physiol; 2008 Jul; 49(7):1003-12. PubMed ID: 18492687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why does anatabine, but not nicotine, accumulate in jasmonate-elicited cultured tobacco BY-2 cells?
    Shoji T; Hashimoto T
    Plant Cell Physiol; 2008 Aug; 49(8):1209-16. PubMed ID: 18567891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tobacco nicotine uptake permease regulates the expression of a key transcription factor gene in the nicotine biosynthesis pathway.
    Kato K; Shoji T; Hashimoto T
    Plant Physiol; 2014 Dec; 166(4):2195-204. PubMed ID: 25344505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis.
    De Boer K; Tilleman S; Pauwels L; Vanden Bossche R; De Sutter V; Vanderhaeghen R; Hilson P; Hamill JD; Goossens A
    Plant J; 2011 Jun; 66(6):1053-65. PubMed ID: 21418355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in Nicotiana tabacum.
    Shitan N; Minami S; Morita M; Hayashida M; Ito S; Takanashi K; Omote H; Moriyama Y; Sugiyama A; Goossens A; Moriyasu M; Yazaki K
    PLoS One; 2014; 9(9):e108789. PubMed ID: 25268729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of pyrrolidine ring biosynthesis and its effects on gene expression and subsequent accumulation of anatabine in leaves of tobacco (N. tabacum L.).
    Kaminski KP; Bovet L; Hilfiker A; Laparra H; Schwaar J; Sierro N; Lang G; De Palo D; Guy PA; Laszlo C; Goepfert S; Ivanov NV
    BMC Genomics; 2023 Sep; 24(1):516. PubMed ID: 37667170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recruitment of a duplicated primary metabolism gene into the nicotine biosynthesis regulon in tobacco.
    Shoji T; Hashimoto T
    Plant J; 2011 Sep; 67(6):949-59. PubMed ID: 21605206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots.
    Shoji T; Inai K; Yazaki Y; Sato Y; Takase H; Shitan N; Yazaki K; Goto Y; Toyooka K; Matsuoka K; Hashimoto T
    Plant Physiol; 2009 Feb; 149(2):708-18. PubMed ID: 19098091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tobacco transcription factors NtMYC2a and NtMYC2b form nuclear complexes with the NtJAZ1 repressor and regulate multiple jasmonate-inducible steps in nicotine biosynthesis.
    Zhang HB; Bokowiec MT; Rushton PJ; Han SC; Timko MP
    Mol Plant; 2012 Jan; 5(1):73-84. PubMed ID: 21746701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein phosphatase NtPP2C2b and MAP kinase NtMPK4 act in concert to modulate nicotine biosynthesis.
    Liu X; Singh SK; Patra B; Liu Y; Wang B; Wang J; Pattanaik S; Yuan L
    J Exp Bot; 2021 Feb; 72(5):1661-1676. PubMed ID: 33258946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NtERF32: a non-NIC2 locus AP2/ERF transcription factor required in jasmonate-inducible nicotine biosynthesis in tobacco.
    Sears MT; Zhang H; Rushton PJ; Wu M; Han S; Spano AJ; Timko MP
    Plant Mol Biol; 2014 Jan; 84(1-2):49-66. PubMed ID: 23934400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic regulation and manipulation of nicotine biosynthesis in tobacco: strategies to eliminate addictive alkaloids.
    Shoji T; Hashimoto T; Saito K
    J Exp Bot; 2024 Mar; 75(6):1741-1753. PubMed ID: 37647764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic analysis provides insights into the AUXIN RESPONSE FACTOR 6-mediated repression of nicotine biosynthesis in tobacco (Nicotiana tabacum L.).
    Hu M; Zhang H; Wang B; Song Z; Gao Y; Yuan C; Huang C; Zhao L; Zhang Y; Wang L; Zou C; Sui X
    Plant Mol Biol; 2021 Sep; 107(1-2):21-36. PubMed ID: 34302568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular evolution of N-methylputrescine oxidase in tobacco.
    Naconsie M; Kato K; Shoji T; Hashimoto T
    Plant Cell Physiol; 2014 Feb; 55(2):436-44. PubMed ID: 24287136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Manipulation of Transcriptional Regulators Alters Nicotine Biosynthesis in Tobacco.
    Hayashi S; Watanabe M; Kobayashi M; Tohge T; Hashimoto T; Shoji T
    Plant Cell Physiol; 2020 Jun; 61(6):1041-1053. PubMed ID: 32191315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.