These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2134354)

  • 1. Two modes of cell migration in the ventral horn of the spinal cord in the chick embryo. A Golgi study.
    Dorado ME; Chmielewski CE; Quesada A; Genis-Gálvez JM; Prada FA
    Histol Histopathol; 1990 Jan; 5(1):37-42. PubMed ID: 2134354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of specific populations of interneurons in the ventral horn of the embryonic chick lumbosacral spinal cord.
    Antal M; Polgár E; Berki A; Birinyi A; Puskár Z
    Eur J Morphol; 1994 Aug; 32(2-4):201-6. PubMed ID: 7803167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of the cervical spinal cord of the mouse embryo. II. A Golgi analysis of sensory, commissural, and association cell differentiation.
    Wentworth LE
    J Comp Neurol; 1984 Jan; 222(1):96-115. PubMed ID: 6699204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Commissural fibers may guide cholinergic neuronal migration in developing rat cervical spinal cord.
    Phelps PE; Vaughn JE
    J Comp Neurol; 1995 Apr; 355(1):38-50. PubMed ID: 7636012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Differention of the neural tube. Experimental study in chick and quail embryos].
    Jacob HJ; Christ B; Jacob M; Ahlström P
    Acta Anat (Basel); 1976; 94(2):204-20. PubMed ID: 961344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embryonic development of four different subsets of cholinergic neurons in rat cervical spinal cord.
    Phelps PE; Barber RP; Brennan LA; Maines VM; Salvaterra PM; Vaughn JE
    J Comp Neurol; 1990 Jan; 291(1):9-26. PubMed ID: 2298930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental changes in the distribution of gamma-aminobutyric acid-immunoreactive neurons in the embryonic chick lumbosacral spinal cord.
    Antal M; Berki AC; Horváth L; O'Donovan MJ
    J Comp Neurol; 1994 May; 343(2):228-36. PubMed ID: 8027440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [In vitro formation of neuronal circuitries II. Golgi method studies of spinal cord rotary cultures].
    Palacios-Prü E; Palacios L; Mendoza RV
    Acta Cient Venez; 1976; 27(6):309-13. PubMed ID: 1025992
    [No Abstract]   [Full Text] [Related]  

  • 9. [Synaptogenesis and axon collaterals coming from the white matter in the upper cervical cord of the 10 day (stage 36) chick embryo--Golgi and electron microscopic studies].
    Matsuda S; Nakasone T; Kanemitsu A
    No To Shinkei; 1987 Sep; 39(9):869-77. PubMed ID: 3689607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of the cervical spinal cord of the mouse embryo. I. A Golgi analysis of ventral root neuron differentiation.
    Wentworth LE
    J Comp Neurol; 1984 Jan; 222(1):81-95. PubMed ID: 6699203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Migration of neuroblasts by perikaryal translocation: role of cellular elongation and axonal outgrowth in the acoustic nuclei of the chick embryo medulla.
    Book KJ; Morest DK
    J Comp Neurol; 1990 Jul; 297(1):55-76. PubMed ID: 2376633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Boundary cap cells--a nest of neural stem cells in the peripheral nervous system].
    Topilko P
    Bull Acad Natl Med; 2007 Oct; 191(7):1383-92; discussion 1392-4. PubMed ID: 18447060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and development of glutamic acid decarboxylase immunoreactivity in the spinal cord of the dogfish Scyliorhinus canicula (elasmobranchs).
    Sueiro C; Carrera I; Molist P; Rodríguez-Moldes I; Anadón R
    J Comp Neurol; 2004 Oct; 478(2):189-206. PubMed ID: 15349979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal motor axons and neural crest cells use different molecular guides for segmental migration through the rostral half-somite.
    Koblar SA; Krull CE; Pasquale EB; McLennan R; Peale FD; Cerretti DP; Bothwell M
    J Neurobiol; 2000 Mar; 42(4):437-47. PubMed ID: 10699981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell death of motoneurons in the chick embryo spinal cord. I. A light and electron microscopic study of naturally occurring and induced cell loss during development.
    Chu-Wang IW; Oppenheim RW
    J Comp Neurol; 1978 Jan; 177(1):33-57. PubMed ID: 618439
    [No Abstract]   [Full Text] [Related]  

  • 16. [Behavior characteristics of nerve and muscle cells in mixed cultures of chick embryo skeletal muscle and spinal cord].
    Museridze DP; Svanidze IK
    Tsitologiia; 1982 May; 24(5):610-2. PubMed ID: 7101460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effects of ventral signals on the development of Brn-3.0-expressing neurons in the dorsal spinal cord.
    Fedtsova N; Turner EE
    Dev Biol; 1997 Oct; 190(1):18-31. PubMed ID: 9331328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Vimentin and neuroepithelial cell differentiation in the spinal cord of chick embryos: an immunohistochemical study].
    Kumano I; Iwatsuki H; Suda M; Sasaki K
    Kaibogaku Zasshi; 1999 Jun; 74(3):317-23. PubMed ID: 10429376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and migration of neuroblasts.
    Langman J; Shimada M; Haden C
    UCLA Forum Med Sci; 1971; 14():33-59. PubMed ID: 4945483
    [No Abstract]   [Full Text] [Related]  

  • 20. The earliest patterns of neuronal differentiation and migration in the mammalian central nervous system.
    Brittis PA; Meiri K; Dent E; Silver J
    Exp Neurol; 1995 Jul; 134(1):1-12. PubMed ID: 7672030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.