These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21343642)

  • 1. Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes.
    Wang D; Wang Q; Wang T
    Nanotechnology; 2011 Apr; 22(13):135604. PubMed ID: 21343642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors.
    Wang D; Wang Q; Wang T
    Inorg Chem; 2011 Jul; 50(14):6482-92. PubMed ID: 21671652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors.
    Xiong S; Yuan C; Zhang X; Xi B; Qian Y
    Chemistry; 2009; 15(21):5320-6. PubMed ID: 19350591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using mesoporous carbon electrodes for brackish water desalination.
    Zou L; Li L; Song H; Morris G
    Water Res; 2008 Apr; 42(8-9):2340-8. PubMed ID: 18222527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vapor-transportation preparation and reversible lithium intercalation/deintercalation of alpha-MoO3 microrods.
    Li W; Cheng F; Tao Z; Chen J
    J Phys Chem B; 2006 Jan; 110(1):119-24. PubMed ID: 16471508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale morphology dependent pseudocapacitance of NiO: Influence of intercalating anions during synthesis.
    Meher SK; Justin P; Rao GR
    Nanoscale; 2011 Feb; 3(2):683-92. PubMed ID: 21180732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures.
    Subramanian V; Zhu H; Vajtai R; Ajayan PM; Wei B
    J Phys Chem B; 2005 Nov; 109(43):20207-14. PubMed ID: 16853612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performing mesoporous iron oxalate anodes for lithium-ion batteries.
    Ang WA; Gupta N; Prasanth R; Madhavi S
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):7011-9. PubMed ID: 23163539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface synthesis of mesoporous MnO2 and its electrochemical capacitive behaviors.
    Yuan C; Gao B; Su L; Zhang X
    J Colloid Interface Sci; 2008 Jun; 322(2):545-50. PubMed ID: 18417147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-high capacitance hematite thin films with controlled nanoscopic morphologies.
    Liu J; Lee E; Kim YT; Kwon YU
    Nanoscale; 2014 Sep; 6(18):10643-9. PubMed ID: 25089016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres.
    Sarma B; Jurovitzki AL; Ray RS; Smith YR; Mohanty SK; Misra M
    Nanotechnology; 2015 Jul; 26(26):265401. PubMed ID: 26057179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures.
    Wang Q; Wen Z; Li J
    Inorg Chem; 2006 Aug; 45(17):6944-9. PubMed ID: 16903753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced capacitive deionization of graphene/mesoporous carbon composites.
    Zhang D; Wen X; Shi L; Yan T; Zhang J
    Nanoscale; 2012 Sep; 4(17):5440-6. PubMed ID: 22836788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hematite (alpha-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties.
    Lian J; Duan X; Ma J; Peng P; Kim T; Zheng W
    ACS Nano; 2009 Nov; 3(11):3749-61. PubMed ID: 19877695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of hematite (alpha-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors.
    Wu C; Yin P; Zhu X; OuYang C; Xie Y
    J Phys Chem B; 2006 Sep; 110(36):17806-12. PubMed ID: 16956266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal synthesis and structure evolution of hierarchical cobalt sulfide nanostructures.
    Dong W; Wang X; Li B; Wang L; Chen B; Li C; Li X; Zhang T; Shi Z
    Dalton Trans; 2011 Jan; 40(1):243-8. PubMed ID: 21088794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices.
    Wang G; Liu H; Horvat J; Wang B; Qiao S; Park J; Ahn H
    Chemistry; 2010 Sep; 16(36):11020-7. PubMed ID: 20690118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors.
    Li Y; Zhao X; Xu Q; Zhang Q; Chen D
    Langmuir; 2011 May; 27(10):6458-63. PubMed ID: 21488622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D porous nano/micro nickel sulfides with hierarchical structure: controlled synthesis, structure characterization and electrochemical properties.
    Mi L; Ding Q; Chen W; Zhao L; Hou H; Liu C; Shen C; Zheng Z
    Dalton Trans; 2013 Apr; 42(16):5724-30. PubMed ID: 23446852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive effects of pore size control and carbonization temperatures on supercapacitive behaviors of porous carbon/carbon nanotube composites.
    Kim JI; Rhee KY; Park SJ
    J Colloid Interface Sci; 2012 Jul; 377(1):307-12. PubMed ID: 22494688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.