These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21343649)

  • 1. Photovoltaic response of a topotaxially formed CdS-Cu(x)S single nanorod heterojunction.
    Mehta BR; Gupta S; Singh VN; Tripathi P; Varandani D
    Nanotechnology; 2011 Apr; 22(13):135701. PubMed ID: 21343649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of charge separation and interface formation in a single nanorod CdS-Cu(x)S heterojunction solar cell using Kelvin probe force microscopy.
    Gupta S; Batra Y; Mehta BR; Satsangi VR
    Nanotechnology; 2013 Jun; 24(25):255703. PubMed ID: 23708491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells.
    Lin YY; Chu TH; Li SS; Chuang CH; Chang CH; Su WF; Chang CP; Chu MW; Chen CW
    J Am Chem Soc; 2009 Mar; 131(10):3644-9. PubMed ID: 19215126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application.
    Mali SS; Desai SK; Dalavi DS; Betty CA; Bhosale PN; Patil PS
    Photochem Photobiol Sci; 2011 Oct; 10(10):1652-8. PubMed ID: 21799995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer nanowire/fullerene bulk heterojunction solar cells: how nanostructure determines photovoltaic properties.
    Xin H; Reid OG; Ren G; Kim FS; Ginger DS; Jenekhe SA
    ACS Nano; 2010 Apr; 4(4):1861-72. PubMed ID: 20222697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective facet reactivity during cation exchange in cadmium sulfide nanorods.
    Sadtler B; Demchenko DO; Zheng H; Hughes SM; Merkle MG; Dahmen U; Wang LW; Alivisatos AP
    J Am Chem Soc; 2009 Apr; 131(14):5285-93. PubMed ID: 19351206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Space-Charging Interfacial Layer by Illumination for Efficient Sb
    Liu R; Shen Z; Zhu L; Huang J; Li H; Chen J; Dong C; Chen T; Yang S; Chen C; Wang M
    ACS Appl Mater Interfaces; 2023 May; 15(20):24583-24594. PubMed ID: 37170934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bis(5,7-dimethyl-8-hydroxyquinolinato)platinum(II) complex for efficient organic heterojunction solar cells.
    Low KH; Xu ZX; Xiang HF; Chui SS; Roy VA; Che CM
    Chem Asian J; 2011 Dec; 6(12):3223-9. PubMed ID: 21905232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic layer-by-layer assembly of CdSe nanorod/polymer nanocomposite thin films.
    McClure SA; Worfolk BJ; Rider DA; Tucker RT; Fordyce JA; Fleischauer MD; Harris KD; Brett MJ; Buriak JM
    ACS Appl Mater Interfaces; 2010 Jan; 2(1):219-29. PubMed ID: 20356238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverted heterojunction solar cells incorporating fullerene/polythiophene composite core/shell nanorod arrays.
    Wang HS; Chen SY; Su MH; Wang YL; Wei KH
    Nanotechnology; 2010 Apr; 21(14):145203. PubMed ID: 20220219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bulk heterojunction formation between indium tin oxide nanorods and CuInS2 nanoparticles for inorganic thin film solar cell applications.
    Cho JW; Park SJ; Kim J; Kim W; Park HK; Do YR; Min BK
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):849-53. PubMed ID: 22235945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-pot synthesis of Cu1.94S-CdS and Cu1.94S-Zn(x)Cd(1-x)S nanodisk heterostructures.
    Regulacio MD; Ye C; Lim SH; Bosman M; Polavarapu L; Koh WL; Zhang J; Xu QH; Han MY
    J Am Chem Soc; 2011 Feb; 133(7):2052-5. PubMed ID: 21280573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO
    Wu F; Qiao Q; Bahrami B; Chen K; Pathak R; Tong Y; Li X; Zhang T; Jian R
    Nanotechnology; 2018 May; 29(21):215403. PubMed ID: 29521645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalyst-assisted solution-liquid-solid synthesis of CdS/CdSe nanorod heterostructures.
    Ouyang L; Maher KN; Yu CL; McCarty J; Park H
    J Am Chem Soc; 2007 Jan; 129(1):133-8. PubMed ID: 17199292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orange-red luminescence from Cu doped CdS nanophosphor prepared using mixed Langmuir-Blodgett multilayers.
    Mandal P; Talwar SS; Major SS; Srinivasa RS
    J Chem Phys; 2008 Mar; 128(11):114703. PubMed ID: 18361597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterojunction Photoanode of Atomic-Layer-Deposited MoS
    Ho TA; Bae C; Joe J; Yang H; Kim S; Park JH; Shin H
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37586-37594. PubMed ID: 31580636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A plasma sputtering decoration route to producing thickness-tunable ZnO/TiO(2) core/shell nanorod arrays.
    Wang M; Huang C; Cao Y; Yu Q; Guo W; Liu Q; Liang J; Hong M
    Nanotechnology; 2009 Jul; 20(28):285311. PubMed ID: 19546501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of hybrid CdS-Au colloidal nanostructures.
    Saunders AE; Popov I; Banin U
    J Phys Chem B; 2006 Dec; 110(50):25421-9. PubMed ID: 17165989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of Cu(In(x)B(1-x))Se2 nanocrystals for low-cost thin film photovoltaics.
    Chen LJ; Liao JD; Chuang YJ; Fu YS
    J Am Chem Soc; 2011 Mar; 133(11):3704-7. PubMed ID: 21348459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient broadband and omnidirectional light-harvesting scheme employing a hierarchical structure based on a ZnO nanorod/Si3N4-coated Si microgroove on 5-inch single crystalline Si solar cells.
    Lin CA; Lai KY; Lien WC; He JH
    Nanoscale; 2012 Oct; 4(20):6520-6. PubMed ID: 22965451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.