These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 21343987)

  • 1. Control method for the optical components of a dynamically reconfigurable optical platform.
    Wang X; Peng J; Ouyang S
    Appl Opt; 2011 Feb; 50(5):662-70. PubMed ID: 21343987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulative method for the optical processor reconfiguration on a dynamically reconfigurable optical platform.
    Wang H; Song K
    Appl Opt; 2012 Jan; 51(2):167-75. PubMed ID: 22270513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform.
    Wang X; Peng J; Li M; Shen Z; Shan O
    Appl Opt; 2010 Apr; 49(12):2352-62. PubMed ID: 20411016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparing a business justification for going electronic.
    Ortiz AO; Luyckx MP
    Radiol Manage; 2002; 24(1):14-21. PubMed ID: 11857990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconfigurable optical power splitter/combiner based on Opto-VLSI processing.
    Mustafa H; Xiao F; Alameh K
    Opt Express; 2011 Oct; 19(22):21890-7. PubMed ID: 22109041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel depth buffer algorithm based on a ternary optical computer.
    Song K; Zhu J; Wang Z; Yan L
    Appl Opt; 2022 Aug; 61(23):6841-6852. PubMed ID: 36255764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconfigurable two-channel demultiplexing using a single baseband control pulse train in a dispersion asymmetric NOLM.
    Du J; Dai Y; Lei GK; Shu C
    Opt Express; 2010 Aug; 18(18):18691-6. PubMed ID: 20940761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconfigurable lens with an electro-optical learning system.
    Takaki Y; Ohzu H
    Appl Opt; 1996 Dec; 35(35):6896-908. PubMed ID: 21151288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconfigurable Shack-Hartmann sensor without moving elements.
    Martínez-Cuenca R; Durán V; Climent V; Tajahuerce E; Bará S; Ares J; Arines J; Martínez-Corral M; Lancis J
    Opt Lett; 2010 May; 35(9):1338-40. PubMed ID: 20436561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavity solitons as pixels in semiconductor microcavities.
    Barland S; Tredicce JR; Brambilla M; Lugiato LA; Balle S; Giudici M; Maggipinto T; Spinelli L; Tissoni G; Knödl T; Miller M; Jäger R
    Nature; 2002 Oct; 419(6908):699-702. PubMed ID: 12384692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamically reconfigurable optical lattices.
    Rodrigo P; Daria V; Glückstad J
    Opt Express; 2005 Mar; 13(5):1384-94. PubMed ID: 19495014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliable and repeatable characterization of optical streak cameras.
    Charest MR; Torres P; Silbernagel CT; Kalantar DH
    Rev Sci Instrum; 2008 Oct; 79(10):10F546. PubMed ID: 19044688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of holographic memory for defect tolerance in optically reconfigurable gate arrays.
    Ogiwara A; Watanabe M; Mabuchi T; Kobayashi F
    Appl Opt; 2010 Aug; 49(22):4255-61. PubMed ID: 20676180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconfigurable all-diffractive optical filters using phase-only spatial light modulators.
    Mínguez-Vega G; Supradeepa VR; Mendoza-Yero O; Weiner AM
    Opt Lett; 2010 Jul; 35(14):2406-8. PubMed ID: 20634845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast-axis orientation dependence on driving voltage for a Stokes polarimeter based on concrete liquid-crystal variable retarders.
    Terrier P; Charbois JM; Devlaminck V
    Appl Opt; 2010 Aug; 49(22):4278-83. PubMed ID: 20676183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superimposing acceleration and optimization method of optical reconfiguration speed without any increase of laser power.
    Mabuchi T; Watanabe M
    Appl Opt; 2010 Aug; 49(22):4120-6. PubMed ID: 20676162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an imaging modality utilizing 2D optical signals during an EPI-fluorescent optical mapping experiment.
    Prior P; Roth BJ
    Phys Med Biol; 2009 May; 54(10):3015-30. PubMed ID: 19387101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel reconfigurable optical interconnect architecture using an Opto-VLSI processor and a 4-f imaging system.
    Shen M; Xiao F; Alameh K
    Opt Express; 2009 Dec; 17(25):22680-8. PubMed ID: 20052194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical inspection of liquid crystal variable retarder inhomogeneities.
    Vargas J; Uribe-Patarroyo N; Antonio Quiroga J; Alvarez-Herrero A; Belenguer T
    Appl Opt; 2010 Feb; 49(4):568-74. PubMed ID: 20119002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key theories and technologies and implementation mechanism of parallel computing for ternary optical computer.
    Zhang S; Chen J; Liu Z; Wang X; Zhang C; Yang J
    PLoS One; 2023; 18(5):e0284700. PubMed ID: 37155611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.