These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 21344183)
1. Dynamic QTL analysis of linolenic acid content in different developmental stages of soybean seed. Han Y; Xie D; Teng W; Zhang S; Chang W; Li W Theor Appl Genet; 2011 May; 122(8):1481-8. PubMed ID: 21344183 [TBL] [Abstract][Full Text] [Related]
2. Impact of epistasis and QTL x environment interaction on the accumulation of seed mass of soybean (Glycine max L. Merr.). Han Y; Teng W; Sun D; Du Y; Qiu L; Xu X; Li W Genet Res (Camb); 2008 Dec; 90(6):481-91. PubMed ID: 19123966 [TBL] [Abstract][Full Text] [Related]
3. Impact of epistasis and QTL × environmental interaction on the mass filling rate during seed development of soybean. Jiang Z; Han Y; Teng W; Li Y; Zhao X; Zhang Z; Man W; Li W Genet Res (Camb); 2012 Apr; 94(2):63-71. PubMed ID: 22624566 [TBL] [Abstract][Full Text] [Related]
4. QTL analyses of seed weight during the development of soybean (Glycine max L. Merr.). Teng W; Han Y; Du Y; Sun D; Zhang Z; Qiu L; Sun G; Li W Heredity (Edinb); 2009 Apr; 102(4):372-80. PubMed ID: 18971958 [TBL] [Abstract][Full Text] [Related]
5. Quantative trait loci of seed traits for soybean in multiple environments. Che JY; Ding JJ; Liu CY; Xin DW; Jiang HW; Hu GH; Chen QS Genet Mol Res; 2014 May; 13(2):4000-12. PubMed ID: 24938611 [TBL] [Abstract][Full Text] [Related]
6. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Reinprecht Y; Poysa VW; Yu K; Rajcan I; Ablett GR; Pauls KP Genome; 2006 Dec; 49(12):1510-27. PubMed ID: 17426766 [TBL] [Abstract][Full Text] [Related]
7. Quantitative trait loci underlying the development of seed composition in soybean (Glycine max L. Merr.). Li W; Sun D; Du Y; Chen Q; Zhang Z; Qiu L; Sun G Genome; 2007 Dec; 50(12):1067-77. PubMed ID: 18059535 [TBL] [Abstract][Full Text] [Related]
8. Mapping isoflavone QTL with main, epistatic and QTL × environment effects in recombinant inbred lines of soybean. Wang Y; Han Y; Zhao X; Li Y; Teng W; Li D; Zhan Y; Li W PLoS One; 2015; 10(3):e0118447. PubMed ID: 25738957 [TBL] [Abstract][Full Text] [Related]
9. Identification of QTL underlying isoflavone contents in soybean seeds among multiple environments. Zeng G; Li D; Han Y; Teng W; Wang J; Qiu L; Li W Theor Appl Genet; 2009 May; 118(8):1455-63. PubMed ID: 19266178 [TBL] [Abstract][Full Text] [Related]
10. QTL in mega-environments: I. Universal and specific seed yield QTL detected in a population derived from a cross of high-yielding adapted x high-yielding exotic soybean lines. Palomeque L; Li-Jun L; Li W; Hedges B; Cober ER; Rajcan I Theor Appl Genet; 2009 Aug; 119(3):417-27. PubMed ID: 19462148 [TBL] [Abstract][Full Text] [Related]
11. Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Li H; Liu H; Han Y; Wu X; Teng W; Liu G; Li W Theor Appl Genet; 2010 May; 120(7):1405-13. PubMed ID: 20069414 [TBL] [Abstract][Full Text] [Related]
12. Identification of quantitative trait loci underlying seed protein content of soybean including main, epistatic, and QTL × environment effects in different regions of Northeast China. Teng W; Li W; Zhang Q; Wu D; Zhao X; Li H; Han Y; Li W Genome; 2017 Aug; 60(8):649-655. PubMed ID: 28445652 [TBL] [Abstract][Full Text] [Related]
13. Pyramided QTL underlying tolerance to Phytophthora root rot in mega-environments from soybean cultivars 'Conrad' and 'Hefeng 25'. Li X; Han Y; Teng W; Zhang S; Yu K; Poysa V; Anderson T; Ding J; Li W Theor Appl Genet; 2010 Aug; 121(4):651-8. PubMed ID: 20390244 [TBL] [Abstract][Full Text] [Related]
14. Identification of QTLs for seed and pod traits in soybean and analysis for additive effects and epistatic effects of QTLs among multiple environments. Yang Z; Xin D; Liu C; Jiang H; Han X; Sun Y; Qi Z; Hu G; Chen Q Mol Genet Genomics; 2013 Dec; 288(12):651-67. PubMed ID: 24022198 [TBL] [Abstract][Full Text] [Related]
15. Genome-Wide Detection of Major and Epistatic Effect QTLs for Seed Protein and Oil Content in Soybean Under Multiple Environments Using High-Density Bin Map. Karikari B; Li S; Bhat JA; Cao Y; Kong J; Yang J; Gai J; Zhao T Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30813455 [TBL] [Abstract][Full Text] [Related]
16. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Han Y; Li D; Zhu D; Li H; Li X; Teng W; Li W Theor Appl Genet; 2012 Aug; 125(4):671-83. PubMed ID: 22481120 [TBL] [Abstract][Full Text] [Related]
17. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Eskandari M; Cober ER; Rajcan I Theor Appl Genet; 2013 Jun; 126(6):1677-87. PubMed ID: 23536049 [TBL] [Abstract][Full Text] [Related]
18. Putative quantitative trait loci associated with calcium content in soybean seed. Zhang B; Chen P; Shi A; Hou A; Ishibashi T; Wang D J Hered; 2009; 100(2):263-9. PubMed ID: 18984858 [TBL] [Abstract][Full Text] [Related]
19. Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents. Eskandari M; Cober ER; Rajcan I Theor Appl Genet; 2013 Feb; 126(2):483-95. PubMed ID: 23192670 [TBL] [Abstract][Full Text] [Related]
20. Identification of QTL underlying somatic embryogenesis capacity of immature embryos in soybean (Glycine max (L.) Merr.). Song X; Han Y; Teng W; Sun G; Li W Plant Cell Rep; 2010 Feb; 29(2):125-31. PubMed ID: 19960195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]