These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 21344313)
1. A radioactive assay allowing the quantitative measurement of cuticular permeability of intact Arabidopsis thaliana leaves. Ballmann C; De Oliveira S; Gutenberger A; Wassmann F; Schreiber L Planta; 2011 Jul; 234(1):9-20. PubMed ID: 21344313 [TBL] [Abstract][Full Text] [Related]
2. A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves. Santrůcek J; Simánová E; Karbulková J; Simková M; Schreiber L J Exp Bot; 2004 Jun; 55(401):1411-22. PubMed ID: 15155780 [TBL] [Abstract][Full Text] [Related]
3. Effect of humidity on cuticular water permeability of isolated cuticular membranes and leaf disks. Schreiber L; Skrabs M; Hartmann KD; Diamantopoulos P; Simanova E; Santrucek J Planta; 2001 Dec; 214(2):274-82. PubMed ID: 11800392 [TBL] [Abstract][Full Text] [Related]
4. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Zeisler V; Schreiber L Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347 [TBL] [Abstract][Full Text] [Related]
5. Effect of temperature on cuticular transpiration of isolated cuticular membranes and leaf discs. Schreiber L J Exp Bot; 2001 Sep; 52(362):1893-900. PubMed ID: 11520878 [TBL] [Abstract][Full Text] [Related]
6. The ecophysiology of leaf cuticular transpiration: are cuticular water permeabilities adapted to ecological conditions? Schuster AC; Burghardt M; Riederer M J Exp Bot; 2017 Nov; 68(19):5271-5279. PubMed ID: 29036342 [TBL] [Abstract][Full Text] [Related]
7. Plant-microbe interactions: identification of epiphytic bacteria and their ability to alter leaf surface permeability. Schreiber L; Krimm U; Knoll D; Sayed M; Auling G; Kroppenstedt RM New Phytol; 2005 May; 166(2):589-94. PubMed ID: 15819920 [TBL] [Abstract][Full Text] [Related]
8. Differences between water permeability of astomatous and stomatous cuticular membranes: effects of air humidity in two species of contrasting drought-resistance strategy. Karbulková J; Schreiber L; Macek P; Santrucek J J Exp Bot; 2008; 59(14):3987-95. PubMed ID: 18836141 [TBL] [Abstract][Full Text] [Related]
9. Wax and cutin mutants of Arabidopsis: Quantitative characterization of the cuticular transport barrier in relation to chemical composition. Sadler C; Schroll B; Zeisler V; Waßmann F; Franke R; Schreiber L Biochim Biophys Acta; 2016 Sep; 1861(9 Pt B):1336-1344. PubMed ID: 26965486 [TBL] [Abstract][Full Text] [Related]
10. Compositional, structural and functional cuticle analysis of Prunus laurocerasus L. sheds light on cuticular barrier plasticity. Diarte C; Xavier de Souza A; Staiger S; Deininger AC; Bueno A; Burghardt M; Graell J; Riederer M; Lara I; Leide J Plant Physiol Biochem; 2021 Jan; 158():434-445. PubMed ID: 33257229 [TBL] [Abstract][Full Text] [Related]
11. Studies on water transport through the sweet cherry fruit surface: IX. Comparing permeability in water uptake and transpiration. Beyer M; Lau S; Knoche M Planta; 2005 Jan; 220(3):474-85. PubMed ID: 15338307 [TBL] [Abstract][Full Text] [Related]
12. The permeation barrier of plant cuticles: uptake of active ingredients is limited by very long-chain aliphatic rather than cyclic wax compounds. Staiger S; Seufert P; Arand K; Burghardt M; Popp C; Riederer M Pest Manag Sci; 2019 Dec; 75(12):3405-3412. PubMed ID: 31436379 [TBL] [Abstract][Full Text] [Related]
13. Characterization of hydrophilic and lipophilic pathways of Hedera helix L. cuticular membranes: permeation of water and uncharged organic compounds. Popp C; Burghardt M; Friedmann A; Riederer M J Exp Bot; 2005 Nov; 56(421):2797-806. PubMed ID: 16143718 [TBL] [Abstract][Full Text] [Related]
14. Ecophysiological relevance of cuticular transpiration of deciduous and evergreen plants in relation to stomatal closure and leaf water potential. Burghardt M; Riederer M J Exp Bot; 2003 Aug; 54(389):1941-9. PubMed ID: 12815029 [TBL] [Abstract][Full Text] [Related]
15. Ecophysiology of cuticular transpiration: comparative investigation of cuticular water permeability of plant species from different habitats. Schreiber L; Riederer M Oecologia; 1996 Sep; 107(4):426-432. PubMed ID: 28307383 [TBL] [Abstract][Full Text] [Related]
16. pH-dependent permeation of amino acids through isolated ivy cuticles is affected by cuticular water sorption and hydration shell size of the solute. Arand K; Stock D; Burghardt M; Riederer M J Exp Bot; 2010 Sep; 61(14):3865-73. PubMed ID: 20631051 [TBL] [Abstract][Full Text] [Related]
18. Increased cuticular wax deposition does not change residual foliar transpiration. Grünhofer P; Herzig L; Sent S; Zeisler-Diehl VV; Schreiber L Plant Cell Environ; 2022 Apr; 45(4):1157-1171. PubMed ID: 35102563 [TBL] [Abstract][Full Text] [Related]
19. Alcohol Ethoxylates Enhancing the Cuticular Uptake of Lipophilic Epoxiconazole Do Not Increase the Rates of Cuticular Transpiration of Leaf and Fruit Cuticles. Zeisler-Diehl VV; Baales J; Migdal B; Tiefensee K; Weuthen M; Fleute-Schlachter I; Kremzow-Graw D; Schreiber L J Agric Food Chem; 2022 Jan; 70(3):777-784. PubMed ID: 35025485 [TBL] [Abstract][Full Text] [Related]
20. Effects of poly- and monodisperse surfactants on 14C-epoxiconazole diffusion in isolated cuticles of Prunus laurocerasus. Gutenberger A; Zeisler VV; Berghaus R; Auweter H; Schreiber L Pest Manag Sci; 2013 Apr; 69(4):512-9. PubMed ID: 23044821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]