These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21344401)

  • 21. Contribution of genoarchitecture to understanding forebrain evolution and development, with particular emphasis on the amygdala.
    Medina L; Bupesh M; Abellán A
    Brain Behav Evol; 2011; 78(3):216-36. PubMed ID: 21860224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of Lrrn1 marks the prospective site of the zona limitans thalami in the early embryonic chicken diencephalon.
    García-Calero E; Garda AL; Marín F; Puelles L
    Gene Expr Patterns; 2006 Oct; 6(8):879-85. PubMed ID: 16631417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The pro-apoptotic activity of a vertebrate Bar-like homeobox gene plays a key role in patterning the Xenopus neural plate by limiting the number of chordin- and shh-expressing cells.
    Offner N; Duval N; Jamrich M; Durand B
    Development; 2005 Apr; 132(8):1807-18. PubMed ID: 15772136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conservation of Pitx1 expression during amphibian limb morphogenesis.
    Chang WY; Khosrowshahian F; Wolanski M; Marshall R; McCormick W; Perry S; Crawford MJ
    Biochem Cell Biol; 2006 Apr; 84(2):257-62. PubMed ID: 16609707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zinc-finger genes Fez and Fez-like function in the establishment of diencephalon subdivisions.
    Hirata T; Nakazawa M; Muraoka O; Nakayama R; Suda Y; Hibi M
    Development; 2006 Oct; 133(20):3993-4004. PubMed ID: 16971467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of the vomeronasal amygdala in anuran amphibians: hodological, neurochemical, and gene expression characterization.
    Moreno N; González A
    J Comp Neurol; 2007 Aug; 503(6):815-31. PubMed ID: 17570503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression patterns of Hoxb genes in the Xenopus embryo suggest roles in anteroposterior specification of the hindbrain and in dorsoventral patterning of the mesoderm.
    Godsave S; Dekker EJ; Holling T; Pannese M; Boncinelli E; Durston A
    Dev Biol; 1994 Dec; 166(2):465-76. PubMed ID: 7813770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression pattern of the homeobox protein NKX2-1 in the developing Xenopus forebrain.
    González A; López JM; Marín O
    Brain Res Gene Expr Patterns; 2002 Oct; 1(3-4):181-5. PubMed ID: 12638129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of the tinman homologues in Xenopus embryos.
    Sparrow DB; Cai C; Kotecha S; Latinkic B; Cooper B; Towers N; Evans SM; Mohun TJ
    Dev Biol; 2000 Nov; 227(1):65-79. PubMed ID: 11076677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Xenopus zinc finger transcription factor IA1 (Insm1) expression marks anteroventral noradrenergic neuron progenitors in Xenopus embryos.
    Parlier D; Ariza A; Christulia F; Genco F; Vanhomwegen J; Kricha S; Souopgui J; Bellefroid EJ
    Dev Dyn; 2008 Aug; 237(8):2147-57. PubMed ID: 18627098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and expression of XRTN1-A and XRTN1-C in Xenopus laevis.
    Park EC; Shim S; Han JK
    Dev Dyn; 2007 Dec; 236(12):3545-53. PubMed ID: 17969151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sonic hedgehog expression during Xenopus laevis forebrain development.
    Domínguez L; González A; Moreno N
    Brain Res; 2010 Aug; 1347():19-32. PubMed ID: 20540934
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of Xenopus Phox2a and Phox2b defines expression domains within the embryonic nervous system and early heart field.
    Talikka M; Stefani G; Brivanlou AH; Zimmerman K
    Gene Expr Patterns; 2004 Sep; 4(5):601-7. PubMed ID: 15261839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinct roles for Distal-less genes Dlx3 and Dlx5 in regulating ectodermal development in Xenopus.
    Luo T; Matsuo-Takasaki M; Sargent TD
    Mol Reprod Dev; 2001 Nov; 60(3):331-7. PubMed ID: 11599044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The amphibian second heart field: Xenopus islet-1 is required for cardiovascular development.
    Brade T; Gessert S; Kühl M; Pandur P
    Dev Biol; 2007 Nov; 311(2):297-310. PubMed ID: 17900553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of planar and early vertical signaling in patterning the expression of Hoxb-1 in Xenopus.
    Poznanski A; Keller R
    Dev Biol; 1997 Apr; 184(2):351-66. PubMed ID: 9133441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The telencephalon of the frog Xenopus based on calretinin immunostaining and gene expression patterns.
    Brox A; Ferreiro B; Puelles L; Medina L
    Brain Res Bull; 2002 Feb-Mar 1; 57(3-4):381-4. PubMed ID: 11922993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of the novel gene Ened during mouse and Xenopus embryonic development.
    Meszaros R; Strate I; Pera EM; Durbeej M
    Int J Dev Biol; 2008; 52(8):1119-22. PubMed ID: 18956345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression dynamics of the LIM-homeobox genes, Lhx1 and Lhx9, in the diencephalon during chick development.
    Sun X; Saitsu H; Shiota K; Ishibashi M
    Int J Dev Biol; 2008; 52(1):33-41. PubMed ID: 18033670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and gastrointestinal expression of Xenopus laevis FoxF2.
    McLin VA; Shah R; Desai NP; Jamrich M
    Int J Dev Biol; 2010; 54(5):919-24. PubMed ID: 20336609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.