BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 21344539)

  • 1. COL1 C-propeptide cleavage site mutations cause high bone mass osteogenesis imperfecta.
    Lindahl K; Barnes AM; Fratzl-Zelman N; Whyte MP; Hefferan TE; Makareeva E; Brusel M; Yaszemski MJ; Rubin CJ; Kindmark A; Roschger P; Klaushofer K; McAlister WH; Mumm S; Leikin S; Kessler E; Boskey AL; Ljunggren O; Marini JC
    Hum Mutat; 2011 Jun; 32(6):598-609. PubMed ID: 21344539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations That Alter the Carboxy-Terminal-Propeptide Cleavage Site of the Chains of Type I Procollagen Are Associated With a Unique Osteogenesis Imperfecta Phenotype.
    Cundy T; Dray M; Delahunt J; Hald JD; Langdahl B; Li C; Szybowska M; Mohammed S; Duncan EL; McInerney-Leo AM; Wheeler PG; Roschger P; Klaushofer K; Rai J; Weis M; Eyre D; Schwarze U; Byers PH
    J Bone Miner Res; 2018 Jul; 33(7):1260-1271. PubMed ID: 29669177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helical mutations in type I collagen that affect the processing of the amino-propeptide result in an Osteogenesis Imperfecta/Ehlers-Danlos Syndrome overlap syndrome.
    Malfait F; Symoens S; Goemans N; Gyftodimou Y; Holmberg E; López-González V; Mortier G; Nampoothiri S; Petersen MB; De Paepe A
    Orphanet J Rare Dis; 2013 May; 8():78. PubMed ID: 23692737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single amino acid substitution (D1441Y) in the carboxyl-terminal propeptide of the proalpha1(I) chain of type I collagen results in a lethal variant of osteogenesis imperfecta with features of dense bone diseases.
    Pace JM; Chitayat D; Atkinson M; Wilcox WR; Schwarze U; Byers PH
    J Med Genet; 2002 Jan; 39(1):23-9. PubMed ID: 11826020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classical investigation of incomplete collagen C-propeptide processing reveals a distinctive high bone mass OI phenotype.
    Qi M
    Hum Mutat; 2011 Jun; 32(6):v. PubMed ID: 21618347
    [No Abstract]   [Full Text] [Related]  

  • 6. A novel COL1A2 C-propeptide cleavage site mutation causing high bone mass osteogenesis imperfecta with a regional distribution pattern.
    Rolvien T; Kornak U; Stürznickel J; Schinke T; Amling M; Mundlos S; Oheim R
    Osteoporos Int; 2018 Jan; 29(1):243-246. PubMed ID: 28916840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COL1A1 C-propeptide mutations cause ER mislocalization of procollagen and impair C-terminal procollagen processing.
    Barnes AM; Ashok A; Makareeva EN; Brusel M; Cabral WA; Weis M; Moali C; Bettler E; Eyre DR; Cassella JP; Leikin S; Hulmes DJS; Kessler E; Marini JC
    Biochim Biophys Acta Mol Basis Dis; 2019 Sep; 1865(9):2210-2223. PubMed ID: 31055083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations near amino end of alpha1(I) collagen cause combined osteogenesis imperfecta/Ehlers-Danlos syndrome by interference with N-propeptide processing.
    Cabral WA; Makareeva E; Colige A; Letocha AD; Ty JM; Yeowell HN; Pals G; Leikin S; Marini JC
    J Biol Chem; 2005 May; 280(19):19259-69. PubMed ID: 15728585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Lethal Type VIII Osteogenesis Imperfecta Has Elevated Bone Matrix Mineralization.
    Fratzl-Zelman N; Barnes AM; Weis M; Carter E; Hefferan TE; Perino G; Chang W; Smith PA; Roschger P; Klaushofer K; Glorieux FH; Eyre DR; Raggio C; Rauch F; Marini JC
    J Clin Endocrinol Metab; 2016 Sep; 101(9):3516-25. PubMed ID: 27383115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive genetic analyses using targeted next-generation sequencing and genotype-phenotype correlations in 53 Japanese patients with osteogenesis imperfecta.
    Ohata Y; Takeyari S; Nakano Y; Kitaoka T; Nakayama H; Bizaoui V; Yamamoto K; Miyata K; Yamamoto K; Fujiwara M; Kubota T; Michigami T; Yamamoto K; Yamamoto T; Namba N; Ebina K; Yoshikawa H; Ozono K
    Osteoporos Int; 2019 Nov; 30(11):2333-2342. PubMed ID: 31363794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defective Proteolytic Processing of Fibrillar Procollagens and Prodecorin Due to Biallelic BMP1 Mutations Results in a Severe, Progressive Form of Osteogenesis Imperfecta.
    Syx D; Guillemyn B; Symoens S; Sousa AB; Medeira A; Whiteford M; Hermanns-Lê T; Coucke PJ; De Paepe A; Malfait F
    J Bone Miner Res; 2015 Aug; 30(8):1445-56. PubMed ID: 25656619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First mouse model for combined osteogenesis imperfecta and Ehlers-Danlos syndrome.
    Chen F; Guo R; Itoh S; Moreno L; Rosenthal E; Zappitelli T; Zirngibl RA; Flenniken A; Cole W; Grynpas M; Osborne LR; Vogel W; Adamson L; Rossant J; Aubin JE
    J Bone Miner Res; 2014 Jun; 29(6):1412-23. PubMed ID: 24443344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type I procollagen C-propeptide defects: study of genotype-phenotype correlation and predictive role of crystal structure.
    Symoens S; Hulmes DJ; Bourhis JM; Coucke PJ; De Paepe A; Malfait F
    Hum Mutat; 2014 Nov; 35(11):1330-41. PubMed ID: 25146735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterozygous C-propeptide mutations in COL1A1: osteogenesis imperfecta type IIC and dense bone variant.
    Takagi M; Hori N; Chinen Y; Kurosawa K; Tanaka Y; Oku K; Sakata H; Fukuzawa R; Nishimura G; Spranger J; Hasegawa T
    Am J Med Genet A; 2011 Sep; 155A(9):2269-73. PubMed ID: 21834035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Type I collagen triplet duplication mutation in lethal osteogenesis imperfecta shifts register of alpha chains throughout the helix and disrupts incorporation of mutant helices into fibrils and extracellular matrix.
    Cabral WA; Mertts MV; Makareeva E; Colige A; Tekin M; Pandya A; Leikin S; Marini JC
    J Biol Chem; 2003 Mar; 278(12):10006-12. PubMed ID: 12538651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between genotype and skeletal phenotype in children and adolescents with osteogenesis imperfecta.
    Rauch F; Lalic L; Roughley P; Glorieux FH
    J Bone Miner Res; 2010 Jun; 25(6):1367-74. PubMed ID: 19929435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substitutions of aspartic acid for glycine-220 and of arginine for glycine-664 in the triple helix of the pro alpha 1(I) chain of type I procollagen produce lethal osteogenesis imperfecta and disrupt the ability of collagen fibrils to incorporate crystalline hydroxyapatite.
    Culbert AA; Lowe MP; Atkinson M; Byers PH; Wallis GA; Kadler KE
    Biochem J; 1995 Nov; 311 ( Pt 3)(Pt 3):815-20. PubMed ID: 7487936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in the COL1A1 and COL1A2 genes associated with osteogenesis imperfecta (OI) types I or III.
    Augusciak-Duma A; Witecka J; Sieron AL; Janeczko M; Pietrzyk JJ; Ochman K; Galicka A; Borszewska-Kornacka MK; Pilch J; Jakubowska-Pietkiewicz E
    Acta Biochim Pol; 2018; 65(1):79-86. PubMed ID: 29543922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique micro- and nano-scale mineralization pattern of human osteogenesis imperfecta type VI bone.
    Fratzl-Zelman N; Schmidt I; Roschger P; Roschger A; Glorieux FH; Klaushofer K; Wagermaier W; Rauch F; Fratzl P
    Bone; 2015 Apr; 73():233-41. PubMed ID: 25554599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Wnt signaling improves bone mass and strength, but not brittleness, in the Col1a1(+/mov13) mouse model of type I Osteogenesis Imperfecta.
    Jacobsen CM; Schwartz MA; Roberts HJ; Lim KE; Spevak L; Boskey AL; Zurakowski D; Robling AG; Warman ML
    Bone; 2016 Sep; 90():127-32. PubMed ID: 27297606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.