These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 21344567)
1. How does pressure affect barrier compression and isotope effects in an enzymatic hydrogen tunneling reaction? Johannissen LO; Scrutton NS; Sutcliffe MJ Angew Chem Int Ed Engl; 2011 Feb; 50(9):2129-32. PubMed ID: 21344567 [No Abstract] [Full Text] [Related]
2. Barrier compression enhances an enzymatic hydrogen-transfer reaction. Hay S; Pudney CR; McGrory TA; Pang J; Sutcliffe MJ; Scrutton NS Angew Chem Int Ed Engl; 2009; 48(8):1452-4. PubMed ID: 19145622 [TBL] [Abstract][Full Text] [Related]
3. Insights into the mode of flavin mononucleotide binding and catalytic mechanism of bacterial chromate reductases: A molecular dynamics simulation study. Pradhan SK; Singh NR; Dehury B; Panda D; Modi MK; Thatoi H J Cell Biochem; 2019 Oct; 120(10):16990-17005. PubMed ID: 31131470 [TBL] [Abstract][Full Text] [Related]
4. H-tunneling in the multiple H-transfers of the catalytic cycle of morphinone reductase and in the reductive half-reaction of the homologous pentaerythritol tetranitrate reductase. Basran J; Harris RJ; Sutcliffe MJ; Scrutton NS J Biol Chem; 2003 Nov; 278(45):43973-82. PubMed ID: 12941965 [TBL] [Abstract][Full Text] [Related]
5. Incorporation of hydrostatic pressure into models of hydrogen tunneling highlights a role for pressure-modulated promoting vibrations. Hay S; Scrutton NS Biochemistry; 2008 Sep; 47(37):9880-7. PubMed ID: 18717597 [TBL] [Abstract][Full Text] [Related]
6. Parallel pathways and free-energy landscapes for enzymatic hydride transfer probed by hydrostatic pressure. Pudney CR; McGrory T; Lafite P; Pang J; Hay S; Leys D; Sutcliffe MJ; Scrutton NS Chembiochem; 2009 May; 10(8):1379-84. PubMed ID: 19405065 [TBL] [Abstract][Full Text] [Related]
7. Deep tunneling dominates the biologically important hydride transfer reaction from NADH to FMN in morphinone reductase. Pang J; Hay S; Scrutton NS; Sutcliffe MJ J Am Chem Soc; 2008 Jun; 130(22):7092-7. PubMed ID: 18470990 [TBL] [Abstract][Full Text] [Related]
8. Solvent as a probe of active site motion and chemistry during the hydrogen tunnelling reaction in morphinone reductase. Hay S; Pudney CR; Sutcliffe MJ; Scrutton NS Chemphyschem; 2008 Sep; 9(13):1875-81. PubMed ID: 18668493 [TBL] [Abstract][Full Text] [Related]
9. Multienzymatic in situ hydrogen peroxide generation cascade for peroxygenase-catalysed oxyfunctionalisation reactions. Pesic M; Willot SJ; Fernández-Fueyo E; Tieves F; Alcalde M; Hollmann F Z Naturforsch C J Biosci; 2019 Feb; 74(3-4):101-104. PubMed ID: 30379645 [TBL] [Abstract][Full Text] [Related]
10. Promoting motions in enzyme catalysis probed by pressure studies of kinetic isotope effects. Hay S; Sutcliffe MJ; Scrutton NS Proc Natl Acad Sci U S A; 2007 Jan; 104(2):507-12. PubMed ID: 17202258 [TBL] [Abstract][Full Text] [Related]
11. Reduction kinetics of a flavin oxidoreductase LuxG from Photobacterium leiognathi (TH1): half-sites reactivity. Nijvipakul S; Ballou DP; Chaiyen P Biochemistry; 2010 Nov; 49(43):9241-8. PubMed ID: 20836540 [TBL] [Abstract][Full Text] [Related]
12. [Mechanism of action of flavin enzymes]. Gardas A Postepy Biochem; 1966; 12(4):513-33. PubMed ID: 4289954 [No Abstract] [Full Text] [Related]
13. Direct analysis of donor-acceptor distance and relationship to isotope effects and the force constant for barrier compression in enzymatic H-tunneling reactions. Pudney CR; Johannissen LO; Sutcliffe MJ; Hay S; Scrutton NS J Am Chem Soc; 2010 Aug; 132(32):11329-35. PubMed ID: 20698699 [TBL] [Abstract][Full Text] [Related]
14. [Light-dependent pyridine nucleotide reduction with molecarhydrogen by subcellular photopigment particles from Rhodopseudomonas capsulata]. Klemme JH; Schlegel HG Z Naturforsch B; 1967 Aug; 22(8):899-900. PubMed ID: 4384771 [No Abstract] [Full Text] [Related]
15. Solubilization and properties of the hydrogenase of Chromatium. Feigenblum E; Krasna AI Biochim Biophys Acta; 1970 Feb; 198(2):157-64. PubMed ID: 4313527 [No Abstract] [Full Text] [Related]
16. The transfer of reduced flavin mononucleotide from LuxG oxidoreductase to luciferase occurs via free diffusion. Tinikul R; Pitsawong W; Sucharitakul J; Nijvipakul S; Ballou DP; Chaiyen P Biochemistry; 2013 Oct; 52(39):6834-43. PubMed ID: 24004065 [TBL] [Abstract][Full Text] [Related]
17. Protonation status and control mechanism of flavin-oxygen intermediates in the reaction of bacterial luciferase. Tinikul R; Lawan N; Akeratchatapan N; Pimviriyakul P; Chinantuya W; Suadee C; Sucharitakul J; Chenprakhon P; Ballou DP; Entsch B; Chaiyen P FEBS J; 2021 May; 288(10):3246-3260. PubMed ID: 33289305 [TBL] [Abstract][Full Text] [Related]
18. Are environmentally coupled enzymatic hydrogen tunneling reactions influenced by changes in solution viscosity? Hay S; Pudney CR; Sutcliffe MJ; Scrutton NS Angew Chem Int Ed Engl; 2008; 47(3):537-40. PubMed ID: 18058788 [No Abstract] [Full Text] [Related]
19. Charge transfer through a fragment of the respiratory complex I and its regulation: an atomistic simulation approach. Na S; Jurkovic S; Friedrich T; Koslowski T Phys Chem Chem Phys; 2018 Aug; 20(30):20023-20032. PubMed ID: 30022212 [TBL] [Abstract][Full Text] [Related]
20. Linear free energy relationships demonstrate a catalytic role for the flavin mononucleotide coenzyme of the type II isopentenyl diphosphate:dimethylallyl diphosphate isomerase. Thibodeaux CJ; Chang WC; Liu HW J Am Chem Soc; 2010 Jul; 132(29):9994-6. PubMed ID: 20593767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]