BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21344589)

  • 21. Detecting and imaging protein-protein interactions during G protein-mediated signal transduction in vivo and in situ by using fluorescence-based techniques.
    Hébert TE; Galés C; Rebois RV
    Cell Biochem Biophys; 2006; 45(1):85-109. PubMed ID: 16679566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging protein-protein interactions in cell motility using fluorescence resonance energy transfer (FRET).
    Parsons M; Vojnovic B; Ameer-Beg S
    Biochem Soc Trans; 2004 Jun; 32(Pt3):431-3. PubMed ID: 15157153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescence resonance energy transfer scanning near-field optical microscopy.
    Sekatskii SK
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):901-19. PubMed ID: 15306500
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
    Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW
    J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chapter 21: Quantitative fluorescence lifetime imaging in cells as a tool to design computational models of ran-regulated reaction networks.
    Kalab P; Pralle A
    Methods Cell Biol; 2008; 89():541-68. PubMed ID: 19118690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of the interaction between SNAP25 and rabphilin in neuroendocrine PC12 cells using the FLIM/FRET technique.
    Lee JD; Chang YF; Kao FJ; Kao LS; Lin CC; Lu AC; Shyu BC; Chiou SH; Yang DM
    Microsc Res Tech; 2008 Jan; 71(1):26-34. PubMed ID: 17886343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence resonance energy transfer and anisotropy reveals both hetero- and homo-energy transfer in the pleckstrin homology-domain and the parathyroid hormone-receptor.
    Steinmeyer R; Harms GS
    Microsc Res Tech; 2009 Jan; 72(1):12-21. PubMed ID: 18785253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis.
    Ecker RC; de Martin R; Steiner GE; Schmid JA
    Cytometry A; 2004 Jun; 59(2):172-81. PubMed ID: 15170596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence anisotropy imaging microscopy for homo-FRET in living cells.
    Tramier M; Coppey-Moisan M
    Methods Cell Biol; 2008; 85():395-414. PubMed ID: 18155472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Imaging molecular interactions in living cells by FRET microscopy.
    Jares-Erijman EA; Jovin TM
    Curr Opin Chem Biol; 2006 Oct; 10(5):409-16. PubMed ID: 16949332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Super-resolution FRET measurements.
    Szalai AM; Zaza C; Stefani FD
    Nanoscale; 2021 Nov; 13(44):18421-18433. PubMed ID: 34739534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical techniques for imaging membrane topography.
    Parthasarathy R; Groves JT
    Cell Biochem Biophys; 2004; 41(3):391-414. PubMed ID: 15509889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beyond the diffraction limit: far-field fluorescence imaging with ultrahigh resolution.
    Rice JH
    Mol Biosyst; 2007 Nov; 3(11):781-93. PubMed ID: 17940661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells.
    Galperin E; Verkhusha VV; Sorkin A
    Nat Methods; 2004 Dec; 1(3):209-17. PubMed ID: 15782196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global analysis of Förster resonance energy transfer in live cells measured by fluorescence lifetime imaging microscopy exploiting the rise time of acceptor fluorescence.
    Laptenok SP; Borst JW; Mullen KM; van Stokkum IH; Visser AJ; van Amerongen H
    Phys Chem Chem Phys; 2010 Jul; 12(27):7593-602. PubMed ID: 20490396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Live cell imaging of protein interactions in poliovirus RNA replication complex using fluorescence resonance energy transfer (FRET).
    Li N; Cui ZQ; Wen JK; Zhang ZP; Wei HP; Zhou YF; Zhang XE
    Biochem Biophys Res Commun; 2008 Apr; 368(3):489-94. PubMed ID: 18252199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence lifetime imaging of coral fluorescent proteins.
    Cox G; Matz M; Salih A
    Microsc Res Tech; 2007 Mar; 70(3):243-51. PubMed ID: 17279514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opportunities for bioprocess monitoring using FRET biosensors.
    Constantinou A; Polizzi KM
    Biochem Soc Trans; 2013 Oct; 41(5):1146-51. PubMed ID: 24059500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.