These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 21344678)

  • 1. Probing the active site of cellodextrin phosphorylase from Clostridium stercorarium: kinetic characterization, ligand docking, and site-directed mutagenesis.
    Tran GH; Desmet T; De Groeve MR; Soetaert W
    Biotechnol Prog; 2011; 27(2):326-32. PubMed ID: 21344678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and properties of a cellobiose phosphorylase (CepA) and a cellodextrin phosphorylase (CepB) from the cellulolytic thermophile Clostridium stercorarium.
    Reichenbecher M; Lottspeich F; Bronnenmeier K
    Eur J Biochem; 1997 Jul; 247(1):262-7. PubMed ID: 9249035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of the oligosaccharide recognition site at the active site of Escherichia coli maltodextrin phosphorylase.
    Drueckes P; Boeck B; Palm D; Schinzel R
    Biochemistry; 1996 May; 35(21):6727-34. PubMed ID: 8639623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that serine 304 is not a key ligand-binding residue in the active site of cytochrome P450 2D6.
    Ellis SW; Hayhurst GP; Lightfoot T; Smith G; Harlow J; Rowland-Yeo K; Larsson C; Mahling J; Lim CK; Wolf CR; Blackburn MG; Lennard MS; Tucker GT
    Biochem J; 2000 Feb; 345 Pt 3(Pt 3):565-71. PubMed ID: 10642515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocatalytic production of novel glycolipids with cellodextrin phosphorylase.
    Tran HG; Desmet T; Saerens K; Waegeman H; Vandekerckhove S; D'hooghe M; Van Bogaert I; Soetaert W
    Bioresour Technol; 2012 Jul; 115():84-7. PubMed ID: 22000964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and application of a screening assay for glycoside phosphorylases.
    De Groeve MR; Tran GH; Van Hoorebeke A; Stout J; Desmet T; Savvides SN; Soetaert W
    Anal Biochem; 2010 Jun; 401(1):162-7. PubMed ID: 20188057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutagenesis of a regulatory site of Escherichia coli ADP-glucose pyrophosphorylase: the role of residue 336 in allosteric behavior.
    Meyer CR; Bork JA; Nadler S; Yirsa J; Preiss J
    Arch Biochem Biophys; 1998 May; 353(1):152-9. PubMed ID: 9578610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallographic and functional characterization of the fluorodifen-inducible glutathione transferase from Glycine max reveals an active site topography suited for diphenylether herbicides and a novel L-site.
    Axarli I; Dhavala P; Papageorgiou AC; Labrou NE
    J Mol Biol; 2009 Jan; 385(3):984-1002. PubMed ID: 19014949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group.
    Sawano T; Saburi W; Hamura K; Matsui H; Mori H
    FEBS J; 2013 Sep; 280(18):4463-73. PubMed ID: 23802549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the essential catalytic residues and substrate affinity in the thermoactive Bacillus stearothermophilus US100 L-arabinose isomerase by site-directed mutagenesis.
    Rhimi M; Juy M; Aghajari N; Haser R; Bejar S
    J Bacteriol; 2007 May; 189(9):3556-63. PubMed ID: 17337581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of substrate-binding and selectivity-related residues of maltooligosyltrehalose synthase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092.
    Tseng WC; Lin CR; Hung XG; Wei TY; Chen YC; Fang TY
    Enzyme Microb Technol; 2014 Mar; 56():53-9. PubMed ID: 24564903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational and structural studies of the active-site residues in truncated Fibrobacter succinogenes1,3-1,4-beta-D-glucanase.
    Tsai LC; Huang HC; Hsiao CH; Chiang YN; Shyur LF; Lin YS; Lee SH
    Acta Crystallogr D Biol Crystallogr; 2008 Dec; 64(Pt 12):1259-66. PubMed ID: 19018102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and site-directed mutagenesis of aspen lignin-specific O-methyltransferase expressed in Escherichia coli.
    Meng H; Campbell WH
    Arch Biochem Biophys; 1996 Jun; 330(2):329-41. PubMed ID: 8660663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic determinants of the substrate specificity of CYP2C9: role of B'-C loop residues in providing the pi-stacking anchor site for warfarin binding.
    Haining RL; Jones JP; Henne KR; Fisher MB; Koop DR; Trager WF; Rettie AE
    Biochemistry; 1999 Mar; 38(11):3285-92. PubMed ID: 10079071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of cellobiose phosphorylase variants with broadened acceptor specificity towards anomerically substituted glucosides.
    De Groeve MR; Remmery L; Van Hoorebeke A; Stout J; Desmet T; Savvides SN; Soetaert W
    Biotechnol Bioeng; 2010 Oct; 107(3):413-20. PubMed ID: 20517986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous chemical reversion of an active site mutation: deamidation of an asparagine residue replacing the catalytic aspartic acid of glutamate dehydrogenase.
    Paradisi F; Dean JL; Geoghegan KF; Engel PC
    Biochemistry; 2005 Mar; 44(9):3636-43. PubMed ID: 15736973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of substrate specificity in the superfamily of amino acid dehydrogenases.
    Baker PJ; Waugh ML; Wang XG; Stillman TJ; Turnbull AP; Engel PC; Rice DW
    Biochemistry; 1997 Dec; 36(51):16109-15. PubMed ID: 9405044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel insights in the acceptor specificity of cellodextrin phosphorylase.
    Tran HG; Desmet T; Soetaert W
    Commun Agric Appl Biol Sci; 2011; 76(1):219-22. PubMed ID: 21539235
    [No Abstract]   [Full Text] [Related]  

  • 19. Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli.
    Chen YS; Lee GC; Shaw JF
    J Agric Food Chem; 2006 Sep; 54(19):7098-104. PubMed ID: 16968068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of alphaArg145 and betaArg263 in the active site of penicillin acylase of Escherichia coli.
    Alkema WB; Prins AK; de Vries E; Janssen DB
    Biochem J; 2002 Jul; 365(Pt 1):303-9. PubMed ID: 12071857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.