These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 2134487)
1. Periodic solutions to nonautonomous difference equations. Clark ME; Gross LJ Math Biosci; 1990 Nov; 102(1):105-19. PubMed ID: 2134487 [TBL] [Abstract][Full Text] [Related]
2. Periodic solutions of population models in a periodically fluctuating environment. Li J Math Biosci; 1992 Jun; 110(1):17-25. PubMed ID: 1623295 [TBL] [Abstract][Full Text] [Related]
3. Dynamic reduction with applications to mathematical biology and other areas. Sacker RJ; Von Bremen HF J Biol Dyn; 2007 Oct; 1(4):437-53. PubMed ID: 22876827 [TBL] [Abstract][Full Text] [Related]
4. A note on the nonautonomous delay Beverton-Holt model. Kocic VL J Biol Dyn; 2010 Mar; 4(2):131-9. PubMed ID: 22876982 [TBL] [Abstract][Full Text] [Related]
5. Analytical solitary-wave solutions of the generalized nonautonomous cubic-quintic nonlinear Schrödinger equation with different external potentials. He JR; Li HM Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066607. PubMed ID: 21797507 [TBL] [Abstract][Full Text] [Related]
6. The effect of dispersal on single-species nonautonomous dispersal models with delays. Teng Z; Lu Z J Math Biol; 2001 May; 42(5):439-54. PubMed ID: 11419619 [TBL] [Abstract][Full Text] [Related]
8. Difference equations with the Allee effect and the periodic Sigmoid Beverton-Holt equation revisited. Gaut GR; Goldring K; Grogan F; Haskell C; Sacker RJ J Biol Dyn; 2012; 6():1019-33. PubMed ID: 22928770 [TBL] [Abstract][Full Text] [Related]
9. An equation of growth of a single species with realistic dependence on crowding and seasonal factors. Bardi M J Math Biol; 1983; 17(1):33-43. PubMed ID: 6875406 [TBL] [Abstract][Full Text] [Related]
10. Hyperbolic almost periodic solutions and toroidal limit sets. Sell GR Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3124-5. PubMed ID: 16592427 [TBL] [Abstract][Full Text] [Related]
11. On the stability of the stationary state of a population growth equation with time-lag. Hadeler KP J Math Biol; 1976 Jun; 3(2):197-201. PubMed ID: 1022831 [TBL] [Abstract][Full Text] [Related]
12. Nonautonomous discrete bright soliton solutions and interaction management for the Ablowitz-Ladik equation. Yu F Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032914. PubMed ID: 25871179 [TBL] [Abstract][Full Text] [Related]
13. Cancer chemotherapy: optimal control using the Verhulst-Pearl equation. Swan GW Bull Math Biol; 1986; 48(3-4):381-404. PubMed ID: 3828564 [No Abstract] [Full Text] [Related]
14. Spatial stability of traveling wave solutions of a nerve conduction equation. Rinzel J Biophys J; 1975 Oct; 15(10):975-88. PubMed ID: 1203443 [TBL] [Abstract][Full Text] [Related]
16. Engineering integrable nonautonomous nonlinear Schrödinger equations. He XG; Zhao D; Li L; Luo HG Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056610. PubMed ID: 19518585 [TBL] [Abstract][Full Text] [Related]
17. Transit times and mean ages for nonautonomous and autonomous compartmental systems. Rasmussen M; Hastings A; Smith MJ; Agusto FB; Chen-Charpentier BM; Hoffman FM; Jiang J; Todd-Brown KE; Wang Y; Wang YP; Luo Y J Math Biol; 2016 Dec; 73(6-7):1379-1398. PubMed ID: 27038163 [TBL] [Abstract][Full Text] [Related]
18. Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers. Wang L; Zhu YJ; Qi FH; Li M; Guo R Chaos; 2015 Jun; 25(6):063111. PubMed ID: 26117105 [TBL] [Abstract][Full Text] [Related]
19. Mathematical assessment of the role of temperature and rainfall on mosquito population dynamics. Abdelrazec A; Gumel AB J Math Biol; 2017 May; 74(6):1351-1395. PubMed ID: 27647127 [TBL] [Abstract][Full Text] [Related]
20. Periodic and traveling wave solutions to Volterra-Lotka equations with diffusion. Chow PL; Tam WC Bull Math Biol; 1976; 38(06):643-58. PubMed ID: 1033006 [No Abstract] [Full Text] [Related] [Next] [New Search]