These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 21344938)
1. Intermediate-assisted multifunctional catalysis in the conversion of flavin to 5,6-dimethylbenzimidazole by BluB: a density functional theory study. Wang XL; Quan JM J Am Chem Soc; 2011 Mar; 133(11):4079-91. PubMed ID: 21344938 [TBL] [Abstract][Full Text] [Related]
2. Active site residues critical for flavin binding and 5,6-dimethylbenzimidazole biosynthesis in the flavin destructase enzyme BluB. Yu TY; Mok KC; Kennedy KJ; Valton J; Anderson KS; Walker GC; Taga ME Protein Sci; 2012 Jun; 21(6):839-49. PubMed ID: 22528544 [TBL] [Abstract][Full Text] [Related]
3. BluB cannibalizes flavin to form the lower ligand of vitamin B12. Taga ME; Larsen NA; Howard-Jones AR; Walsh CT; Walker GC Nature; 2007 Mar; 446(7134):449-53. PubMed ID: 17377583 [TBL] [Abstract][Full Text] [Related]
4. Catalytic mechanism of glycosyltransferases: hybrid quantum mechanical/molecular mechanical study of the inverting N-acetylglucosaminyltransferase I. Kozmon S; Tvaroska I J Am Chem Soc; 2006 Dec; 128(51):16921-7. PubMed ID: 17177443 [TBL] [Abstract][Full Text] [Related]
5. Single-enzyme conversion of FMNH2 to 5,6-dimethylbenzimidazole, the lower ligand of B12. Gray MJ; Escalante-Semerena JC Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2921-6. PubMed ID: 17301238 [TBL] [Abstract][Full Text] [Related]
6. Kinetic isotope effects on the noncovalent flavin mutant protein of pyranose 2-oxidase reveal insights into the flavin reduction mechanism. Sucharitakul J; Wongnate T; Chaiyen P Biochemistry; 2010 May; 49(17):3753-65. PubMed ID: 20359206 [TBL] [Abstract][Full Text] [Related]
7. Unique Biochemical and Sequence Features Enable BluB To Destroy Flavin and Distinguish BluB from the Flavin Monooxygenase Superfamily. Hazra AB; Ballou DP; Taga ME Biochemistry; 2018 Mar; 57(11):1748-1757. PubMed ID: 29457884 [TBL] [Abstract][Full Text] [Related]
8. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations. Valiev M; Kawai R; Adams JA; Weare JH J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447 [TBL] [Abstract][Full Text] [Related]
9. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes. de Visser SP; Shaik S J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816 [TBL] [Abstract][Full Text] [Related]
10. Proton-coupled electron transfer and adduct configuration are important for C4a-hydroperoxyflavin formation and stabilization in a flavoenzyme. Wongnate T; Surawatanawong P; Visitsatthawong S; Sucharitakul J; Scrutton NS; Chaiyen P J Am Chem Soc; 2014 Jan; 136(1):241-53. PubMed ID: 24368083 [TBL] [Abstract][Full Text] [Related]
11. Bacillus megaterium has both a functional BluB protein required for DMB synthesis and a related flavoprotein that forms a stable radical species. Collins HF; Biedendieck R; Leech HK; Gray M; Escalante-Semerena JC; McLean KJ; Munro AW; Rigby SE; Warren MJ; Lawrence AD PLoS One; 2013; 8(2):e55708. PubMed ID: 23457476 [TBL] [Abstract][Full Text] [Related]
12. Strain and near attack conformers in enzymic thiamin catalysis: X-ray crystallographic snapshots of bacterial transketolase in covalent complex with donor ketoses xylulose 5-phosphate and fructose 6-phosphate, and in noncovalent complex with acceptor aldose ribose 5-phosphate. Asztalos P; Parthier C; Golbik R; Kleinschmidt M; Hübner G; Weiss MS; Friedemann R; Wille G; Tittmann K Biochemistry; 2007 Oct; 46(43):12037-52. PubMed ID: 17914867 [TBL] [Abstract][Full Text] [Related]
13. Importance of a serine proximal to the C(4a) and N(5) flavin atoms for hydride transfer in choline oxidase. Yuan H; Gadda G Biochemistry; 2011 Feb; 50(5):770-9. PubMed ID: 21174412 [TBL] [Abstract][Full Text] [Related]
14. DFT study of the mechanisms of in water Au(I)-catalyzed tandem [3,3]-rearrangement/Nazarov reaction/[1,2]-hydrogen shift of enynyl acetates: a proton-transport catalysis strategy in the water-catalyzed [1,2]-hydrogen shift. Shi FQ; Li X; Xia Y; Zhang L; Yu ZX J Am Chem Soc; 2007 Dec; 129(50):15503-12. PubMed ID: 18027935 [TBL] [Abstract][Full Text] [Related]
15. Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: a density functional theory study. Gao H; Ke Z; DeYonker NJ; Wang J; Xu H; Mao ZW; Phillips DL; Zhao C J Am Chem Soc; 2011 Mar; 133(9):2904-15. PubMed ID: 21319769 [TBL] [Abstract][Full Text] [Related]
16. 4-Hydroxyphenylpyruvate dioxygenase: a hybrid density functional study of the catalytic reaction mechanism. Borowski T; Bassan A; Siegbahn PE Biochemistry; 2004 Sep; 43(38):12331-42. PubMed ID: 15379572 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin. Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228 [TBL] [Abstract][Full Text] [Related]
18. Model studies on p-hydroxybenzoate hydroxylase. The catalytic role of Arg-214 and Tyr-201 in the hydroxylation step. Bach RD; Dmitrenko O J Am Chem Soc; 2004 Jan; 126(1):127-42. PubMed ID: 14709077 [TBL] [Abstract][Full Text] [Related]
19. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond. Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101 [TBL] [Abstract][Full Text] [Related]
20. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Su Q; Klinman JP Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]