These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21345153)

  • 41. Particulate matter exposure induces persistent lung inflammation and endothelial dysfunction.
    Tamagawa E; Bai N; Morimoto K; Gray C; Mui T; Yatera K; Zhang X; Xing L; Li Y; Laher I; Sin DD; Man SF; van Eeden SF
    Am J Physiol Lung Cell Mol Physiol; 2008 Jul; 295(1):L79-85. PubMed ID: 18469117
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Potential of coculture in vitro models to study inflammatory and sensitizing effects of particles on the lung.
    Klein SG; Hennen J; Serchi T; Blömeke B; Gutleb AC
    Toxicol In Vitro; 2011 Dec; 25(8):1516-34. PubMed ID: 21963807
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interaction between combustion-generated organic nanoparticles and biological systems: in vitro study of cell toxicity and apoptosis in human keratinocytes.
    Pedata P; Boccellino M; La Porta R; Napolitano M; Minutolo P; Sgro LA; Zei F; Sannolo N; Quagliuolo L
    Nanotoxicology; 2012 Jun; 6(4):338-52. PubMed ID: 21574799
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution.
    Kelly FJ; Fussell JC
    Free Radic Biol Med; 2017 Sep; 110():345-367. PubMed ID: 28669628
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The critical role of endothelial function in fine particulate matter-induced atherosclerosis.
    Liang S; Zhang J; Ning R; Du Z; Liu J; Batibawa JW; Duan J; Sun Z
    Part Fibre Toxicol; 2020 Dec; 17(1):61. PubMed ID: 33276797
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Applications of the comet assay in particle toxicology: air pollution and engineered nanomaterials exposure.
    Møller P; Hemmingsen JG; Jensen DM; Danielsen PH; Karottki DG; Jantzen K; Roursgaard M; Cao Y; Kermanizadeh A; Klingberg H; Christophersen DV; Hersoug LG; Loft S
    Mutagenesis; 2015 Jan; 30(1):67-83. PubMed ID: 25527730
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Endothelial dysfunction in normal and prediabetic rats with metabolic syndrome exposed by oral gavage to carbon black nanoparticles.
    Folkmann JK; Vesterdal LK; Sheykhzade M; Loft S; Møller P
    Toxicol Sci; 2012 Sep; 129(1):98-107. PubMed ID: 22610611
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanoparticles and potential human health implications: past and future directions. Preface.
    Gulumian M; Vallyathan V
    J Toxicol Environ Health A; 2010; 73(5):339-40. PubMed ID: 20155576
    [No Abstract]   [Full Text] [Related]  

  • 49. The developing respiratory tract and its specific needs in regard to ultrafine particulate matter exposure.
    Schüepp K; Sly PD
    Paediatr Respir Rev; 2012 Jun; 13(2):95-9. PubMed ID: 22475255
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of oxidative stress in the cardiovascular actions of particulate air pollution.
    Miller MR
    Biochem Soc Trans; 2014 Aug; 42(4):1006-11. PubMed ID: 25109994
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of atherosclerosis as a potential mode of action for cardiovascular effects of particulate matter.
    Prueitt RL; Cohen JM; Goodman JE
    Regul Toxicol Pharmacol; 2015 Nov; 73(2 Suppl):S1-15. PubMed ID: 26474868
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanoparticles-a thoracic toxicology perspective.
    Duffin R; Mills NL; Donaldson K
    Yonsei Med J; 2007 Aug; 48(4):561-72. PubMed ID: 17722227
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modest vasomotor dysfunction induced by low doses of C60 fullerenes in apolipoprotein E knockout mice with different degree of atherosclerosis.
    Vesterdal LK; Folkmann JK; Jacobsen NR; Sheykhzade M; Wallin H; Loft S; Møller P
    Part Fibre Toxicol; 2009 Feb; 6():5. PubMed ID: 19243580
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxidative stress as a screening metric of potential toxicity by nanoparticles and airborne [corrected] particulate matter.
    Rogers EJ; Bello D; Hsieh S
    Inhal Toxicol; 2008 Jul; 20(9):895. PubMed ID: 18645731
    [No Abstract]   [Full Text] [Related]  

  • 55. Particulate air pollution is a matter of the heart.
    Timonen KL
    Future Cardiol; 2005 May; 1(3):315-7. PubMed ID: 19804114
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles.
    Møller P; Folkmann JK; Danielsen PH; Jantzen K; Loft S
    Curr Mol Med; 2012 Jul; 12(6):732-45. PubMed ID: 22292440
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hemocompatibility of inhaled environmental nanoparticles: Potential use of in vitro testing.
    Fröhlich E
    J Hazard Mater; 2017 Aug; 336():158-167. PubMed ID: 28494303
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Particulate matter and atherosclerosis: a bibliometric analysis of original research articles published in 1973-2014.
    Wang F; Jia X; Wang X; Zhao Y; Hao W
    BMC Public Health; 2016 Apr; 16():348. PubMed ID: 27093947
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oleic acid and derivatives affect human endothelial cell mitochondrial function and vasoactive mediator production.
    Bass VL; Soukup JM; Ghio AJ; Madden MC
    Lipids Health Dis; 2020 Jun; 19(1):128. PubMed ID: 32505182
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proceedings from the 9th International Conference on Particles: Risks and Opportunities, Cape Town, South Africa.
    J Toxicol Environ Health A; 2010; 73(5):339-461. PubMed ID: 20229617
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.