These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 2134520)
1. A mathematical model of cancer chemotherapy with an optimal selection of parameters. Martin RB; Fisher ME; Minchin RF; Teo KL Math Biosci; 1990 May; 99(2):205-30. PubMed ID: 2134520 [TBL] [Abstract][Full Text] [Related]
2. Optimal drug regimens in cancer chemotherapy for single drugs that block progression through the cell cycle. Murray JM Math Biosci; 1994 Oct; 123(2):183-213. PubMed ID: 7827419 [TBL] [Abstract][Full Text] [Related]
3. Optimizing drug regimens in cancer chemotherapy by an efficacy-toxicity mathematical model. Iliadis A; Barbolosi D Comput Biomed Res; 2000 Jun; 33(3):211-26. PubMed ID: 10860586 [TBL] [Abstract][Full Text] [Related]
4. Optimal chemotherapy regimens: influence of tumours on normal cells and several toxicity constraints. Matveev AS; Savkin AV IMA J Math Appl Med Biol; 2001 Mar; 18(1):25-40. PubMed ID: 11339336 [TBL] [Abstract][Full Text] [Related]
5. Optimal drug regimens in cancer chemotherapy: a multi-objective approach. Batmani Y; Khaloozadeh H Comput Biol Med; 2013 Dec; 43(12):2089-95. PubMed ID: 24290925 [TBL] [Abstract][Full Text] [Related]
6. [Dosage regimen optimization in cancer chemotherapy using a mathematical model]. Barbolosi D; Freyer G; Ciccolini J; Iliadis A Bull Cancer; 2003 Feb; 90(2):167-75. PubMed ID: 12660135 [TBL] [Abstract][Full Text] [Related]
7. An example of the effects of drug resistance on the optimal schedule for a single drug in cancer chemotherapy. Murray JM IMA J Math Appl Med Biol; 1995; 12(1):55-69. PubMed ID: 7594878 [TBL] [Abstract][Full Text] [Related]
8. Optimal control for a cancer chemotherapy problem with general growth and loss functions. Murray JM Math Biosci; 1990 Mar; 98(2):273-87. PubMed ID: 2134507 [TBL] [Abstract][Full Text] [Related]
9. Influence of tumours on normal cells and optimal chemotherapy regimens: the case of several drugs and toxicity constraints. Matveev AS; Savkin AV Math Med Biol; 2005 Jun; 22(2):143-62. PubMed ID: 15781427 [TBL] [Abstract][Full Text] [Related]
10. Some optimal control problems in cancer chemotherapy with a toxicity limit. Murray JM Math Biosci; 1990 Jun; 100(1):49-67. PubMed ID: 2134468 [TBL] [Abstract][Full Text] [Related]
11. The effect of heterogeneity on optimal regimens in cancer chemotherapy. Murray JM; Coldman AJ Math Biosci; 2003 Sep; 185(1):73-87. PubMed ID: 12900142 [TBL] [Abstract][Full Text] [Related]
12. A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competitive environment. Panetta JC Bull Math Biol; 1996 May; 58(3):425-47. PubMed ID: 8688836 [TBL] [Abstract][Full Text] [Related]
13. Modeling oxaliplatin drug delivery to circadian rhythms in drug metabolism and host tolerance. Clairambault J Adv Drug Deliv Rev; 2007 Aug; 59(9-10):1054-68. PubMed ID: 17707544 [TBL] [Abstract][Full Text] [Related]
14. Development of optimal drug administration strategies for cancer-chemotherapy in the framework of systems theory. Acharya RS; Sundareshan MK Int J Biomed Comput; 1984; 15(2):139-50. PubMed ID: 6724730 [TBL] [Abstract][Full Text] [Related]
15. Application of mathematical models to metronomic chemotherapy: What can be inferred from minimal parameterized models? Ledzewicz U; Schättler H Cancer Lett; 2017 Aug; 401():74-80. PubMed ID: 28323033 [TBL] [Abstract][Full Text] [Related]
16. A mathematical model of drug resistance: heterogeneous tumors. Panetta JC Math Biosci; 1998 Jan; 147(1):41-61. PubMed ID: 9401351 [TBL] [Abstract][Full Text] [Related]
17. A worst-case optimal parameter selection model of cancer chemotherapy. Martin RB; Teo KL IEEE Trans Biomed Eng; 1992 Oct; 39(10):1081-5. PubMed ID: 1452174 [TBL] [Abstract][Full Text] [Related]
18. A mathematical model of the development of drug resistance to cancer chemotherapy. Birkhead BG; Rankin EM; Gallivan S; Dones L; Rubens RD Eur J Cancer Clin Oncol; 1987 Sep; 23(9):1421-7. PubMed ID: 3678329 [TBL] [Abstract][Full Text] [Related]
19. Optimal control for selected cancer chemotherapy ODE models: a view on the potential of optimal schedules and choice of objective function. Engelhart M; Lebiedz D; Sager S Math Biosci; 2011 Jan; 229(1):123-34. PubMed ID: 21129386 [TBL] [Abstract][Full Text] [Related]
20. Optimal control oriented to therapy for a free-boundary tumor growth model. Calzada MC; Fernández-Cara E; Marín M J Theor Biol; 2013 May; 325():1-11. PubMed ID: 23485361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]