BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 21345438)

  • 1. Novel cationic pH-responsive poly(N,N-dimethylaminoethyl methacrylate) microcapsules prepared by a microfluidic technique.
    Wei J; Ju XJ; Xie R; Mou CL; Lin X; Chu LY
    J Colloid Interface Sci; 2011 May; 357(1):101-8. PubMed ID: 21345438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of novel cationic pH-responsive poly(N,N'-dimethylamino ethyl methacrylate) microgels.
    Hu L; Chu LY; Yang M; Wang HD; Hui Niu C
    J Colloid Interface Sci; 2007 Jul; 311(1):110-7. PubMed ID: 17397857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability.
    Jiang X; Ge Z; Xu J; Liu H; Liu S
    Biomacromolecules; 2007 Oct; 8(10):3184-92. PubMed ID: 17887794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Fabrication of Structure-Controlled Chitosan Microcapsules via Interfacial Cross-Linking of Droplet Templates.
    Mu XT; Li Y; Ju XJ; Yang XL; Xie R; Wang W; Liu Z; Chu LY
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57514-57525. PubMed ID: 33301686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-induced inversion of water-in-oil emulsions to oil-in-water high internal phase emulsions (HIPEs) using core cross-linked star (CCS) polymer as interfacial stabilizer.
    Chen Q; Deng X; An Z
    Macromol Rapid Commun; 2014 Jun; 35(12):1148-52. PubMed ID: 24700484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designer polymer-based microcapsules made using microfluidics.
    Chen PW; Erb RM; Studart AR
    Langmuir; 2012 Jan; 28(1):144-52. PubMed ID: 22118302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dry hybrid lipid-silica microcapsules engineered from submicron lipid droplets and nanoparticles as a novel delivery system for poorly soluble drugs.
    Simovic S; Heard P; Hui H; Song Y; Peddie F; Davey AK; Lewis A; Rades T; Prestidge CA
    Mol Pharm; 2009; 6(3):861-72. PubMed ID: 19358600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system.
    Choi CH; Jung JH; Kim DW; Chung YM; Lee CS
    Lab Chip; 2008 Sep; 8(9):1544-51. PubMed ID: 18818811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicore-shell PNIPAm-co-PEGMa microcapsules for cell encapsulation.
    Trongsatitkul T; Budhlall BM
    Langmuir; 2011 Nov; 27(22):13468-80. PubMed ID: 21962146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable preparation of monodisperse alginate microcapsules with oil cores.
    Mou CL; Deng QZ; Hu JX; Wang LY; Deng HB; Xiao G; Zhan Y
    J Colloid Interface Sci; 2020 Jun; 569():307-319. PubMed ID: 32126344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of monodisperse thermo-sensitive poly(N-isopropylacrylamide) hollow microcapsules.
    Cheng CJ; Chu LY; Ren PW; Zhang J; Hu L
    J Colloid Interface Sci; 2007 Sep; 313(2):383-8. PubMed ID: 17553513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of shell cross-linked micelles with hydroxy-functional coronas: a pragmatic alternative to dendrimers?
    Pilon LN; Armes SP; Findlay P; Rannard SP
    Langmuir; 2005 Apr; 21(9):3808-13. PubMed ID: 15835941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shell cross-linked hyaluronic acid/polylysine layer-by-layer polyelectrolyte microcapsules prepared by removal of reducible hyaluronic acid microgel cores.
    Lee H; Jeong Y; Park TG
    Biomacromolecules; 2007 Dec; 8(12):3705-11. PubMed ID: 17994698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of pH-responsive microgels containing methacrylic acid: effects of particle composition and added calcium.
    Dalmont H; Pinprayoon O; Saunders BR
    Langmuir; 2008 Mar; 24(6):2834-40. PubMed ID: 18290684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition.
    Nam K; Watanabe J; Ishihara K
    Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Psyllium and copolymers of 2-hydroxylethylmethacrylate and acrylamide-based novel devices for the use in colon specific antibiotic drug delivery.
    Singh B; Chauhan N; Kumar S; Bala R
    Int J Pharm; 2008 Mar; 352(1-2):74-80. PubMed ID: 18055144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of thermoresponsive core-shell copolymer latex with potential use in drug targeting.
    Lin CL; Chiu WY; Lee CF
    J Colloid Interface Sci; 2005 Oct; 290(2):397-405. PubMed ID: 15946672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New hydrolyzable pH-responsive cationic polymers for gene delivery: a preliminary study.
    Veron L; Ganée A; Charreyre MT; Pichot C; Delair T
    Macromol Biosci; 2004 Apr; 4(4):431-44. PubMed ID: 15468235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphoteric core-shell microgels: contraphilic two-compartment colloidal particles.
    Christodoulakis KE; Vamvakaki M
    Langmuir; 2010 Jan; 26(2):639-47. PubMed ID: 19754064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.