These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 21345551)

  • 1. Development of a dynamic transfer model of (14)C from the atmosphere to rice plants.
    Tani T; Arai R; Nozoe S; Tako Y; Takahashi T; Nakamura Y
    J Environ Radioact; 2011 Apr; 102(4):340-7. PubMed ID: 21345551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamic transfer model for the estimation of 14C radioactivity in Japanese radish (Daikon) plants.
    Takashi T; Arai R; Nozoe S; Tako Y; Nakamura Y
    Health Phys; 2013 Aug; 105(2):121-7. PubMed ID: 23799496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-14 transfer into rice plants from a continuous atmospheric source: observations and model predictions.
    Koarashi J; Davis PA; Galeriu D; Melintescu A; Saito M; Siclet F; Uchida S
    J Environ Radioact; 2008 Oct; 99(10):1671-9. PubMed ID: 18550232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. International study on the validation of models for the environmental transfer of tritium and carbon-14.
    Yankovich TL; Koarashi J; Kim SB; Davis PA
    Appl Radiat Isot; 2008 Nov; 66(11):1726-9. PubMed ID: 18667321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TOCATTA: a dynamic transfer model of ¹⁴C from the atmosphere to soil-plant systems.
    Dizès SL; Maro D; Hébert D; Gonze MA; Aulagnier C
    J Environ Radioact; 2012 Feb; 105():48-59. PubMed ID: 22230021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive model for the (14)C radioactivity in a plant following an exposure to airborne (14)CO(2) gas.
    Keum DK; Jun I; Lim KM; Choi YH; Lee CW
    J Environ Radioact; 2008 Nov; 99(11):1756-63. PubMed ID: 18774206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the transfer of 137Cs to rice plants by a dynamic compartment model with a consideration of the soil properties.
    Keum DK; Lee H; Kang HS; Jun I; Choi YH; Lee CW
    J Environ Radioact; 2007; 92(1):1-15. PubMed ID: 17081663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dynamic compartment model for assessing the transfer of radionuclide deposited onto flooded rice-fields.
    Keum DK; Lee HS; Choi HJ; Kang HS; Lim KM; Choi YH; Lee CW
    J Environ Radioact; 2004; 76(3):349-67. PubMed ID: 15261422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root-uptake of (14)C derived from acetic acid and (14)C transfer to rice edible parts.
    Ogiyama S; Suzuki H; Inubushi K; Takeda H; Uchida S
    Appl Radiat Isot; 2010 Feb; 68(2):256-64. PubMed ID: 19962904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake and distribution of iodine in rice plants.
    Tsukada H; Takeda A; Tagami K; Uchida S
    J Environ Qual; 2008; 37(6):2243-7. PubMed ID: 18948477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling.
    Yang J; Zhang J; Wang Z; Zhu Q; Liu L
    Planta; 2002 Aug; 215(4):645-52. PubMed ID: 12172848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the transfer of 14C from the atmosphere to grass: a case study in a grass field near AREVA-NC La Hague.
    Aulagnier C; Le Dizès S; Maro D; Hébert D; Lardy R; Martin R; Gonze MA
    J Environ Radioact; 2012 Oct; 112():52-9. PubMed ID: 22537618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process-oriented dose assessment model for 14C due to releases during normal operation of a nuclear power plant.
    Aquilonius K; Hallberg B
    J Environ Radioact; 2005; 82(3):267-83. PubMed ID: 15885375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atmospheric CO2 enrichment facilitates cation release from soil.
    Cheng L; Zhu J; Chen G; Zheng X; Oh NH; Rufty TW; Richter Dd; Hu S
    Ecol Lett; 2010 Mar; 13(3):284-91. PubMed ID: 20100242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil.
    Lu Y; Murase J; Watanabe A; Sugimoto A; Kimura M
    FEMS Microbiol Ecol; 2004 May; 48(2):179-86. PubMed ID: 19712401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conceptual approaches for the development of dynamic specific activity models of 14C transfer from surface water to humans.
    Sheppard SC; Ciffroy P; Siclet F; Damois C; Sheppard MI; Stephenson M
    J Environ Radioact; 2006; 87(1):32-51. PubMed ID: 16375996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures.
    Bengtson P; Bengtsson G
    Ecol Lett; 2007 Sep; 10(9):783-90. PubMed ID: 17663711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of C-uptake by plants on the spatial distribution of
    Ota M; Katata G; Nagai H; Terada H
    J Environ Radioact; 2016 Oct; 162-163():189-204. PubMed ID: 27267157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (14)C, delta(13)C and total C content in soils around a Brazilian PWR nuclear power plant.
    Dias CM; Telles EC; Santos RV; Stenström K; Nícoli IG; da Silveira Corrêa R; Skog G
    J Environ Radioact; 2009 Apr; 100(4):348-53. PubMed ID: 19216012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amended soil.
    Dwivedi S; Tripathi RD; Srivastava S; Mishra S; Shukla MK; Tiwari KK; Singh R; Rai UN
    Chemosphere; 2007 Feb; 67(1):140-51. PubMed ID: 17166555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.