BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 21345752)

  • 1. Blood vessel maturation, vascular phenotype and angiogenic potential in malignant melanoma: one step forward for overcoming anti-angiogenic drug resistance?
    Helfrich I; Schadendorf D
    Mol Oncol; 2011 Apr; 5(2):137-49. PubMed ID: 21345752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistance to antiangiogenic therapy is directed by vascular phenotype, vessel stabilization, and maturation in malignant melanoma.
    Helfrich I; Scheffrahn I; Bartling S; Weis J; von Felbert V; Middleton M; Kato M; Ergün S; Augustin HG; Schadendorf D
    J Exp Med; 2010 Mar; 207(3):491-503. PubMed ID: 20194633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy.
    Gee MS; Procopio WN; Makonnen S; Feldman MD; Yeilding NM; Lee WM
    Am J Pathol; 2003 Jan; 162(1):183-93. PubMed ID: 12507901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiogenesis in malignant melanoma.
    Felcht M; Thomas M
    J Dtsch Dermatol Ges; 2015 Feb; 13(2):125-36. PubMed ID: 25631130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiogenesis in cutaneous malignant melanoma and potential therapeutic strategies.
    Basu B; Biswas S; Wrigley J; Sirohi B; Corrie P
    Expert Rev Anticancer Ther; 2009 Nov; 9(11):1583-98. PubMed ID: 19895243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular phenotype identification and anti-angiogenic treatment recommendation: A pseudo-multiscale mathematical model of angiogenesis.
    Hutchinson LG; Gaffney EA; Maini PK; Wagg J; Phipps A; Byrne HM
    J Theor Biol; 2016 Jun; 398():162-80. PubMed ID: 26987523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid vascular regrowth in tumors after reversal of VEGF inhibition.
    Mancuso MR; Davis R; Norberg SM; O'Brien S; Sennino B; Nakahara T; Yao VJ; Inai T; Brooks P; Freimark B; Shalinsky DR; Hu-Lowe DD; McDonald DM
    J Clin Invest; 2006 Oct; 116(10):2610-21. PubMed ID: 17016557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for VEGF as a negative regulator of pericyte function and vessel maturation.
    Greenberg JI; Shields DJ; Barillas SG; Acevedo LM; Murphy E; Huang J; Scheppke L; Stockmann C; Johnson RS; Angle N; Cheresh DA
    Nature; 2008 Dec; 456(7223):809-13. PubMed ID: 18997771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The EGFR inhibitor gefitinib suppresses recruitment of pericytes and bone marrow-derived perivascular cells into tumor vessels.
    Iivanainen E; Lauttia S; Zhang N; Tvorogov D; Kulmala J; Grenman R; Salven P; Elenius K
    Microvasc Res; 2009 Dec; 78(3):278-85. PubMed ID: 19596357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trends and Challenges in Tumor Anti-Angiogenic Therapies.
    Jászai J; Schmidt MHH
    Cells; 2019 Sep; 8(9):. PubMed ID: 31540455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening assay for blood vessel maturation inhibitors.
    Fu C; van der Zwan A; Gerber S; Van Den Berg S; No E; Wang WC; Sheibani N; Carducci MA; Kachhap S; Hammers HJ
    Biochem Biophys Res Commun; 2013 Aug; 438(2):364-9. PubMed ID: 23892038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pericytes: a double-edged sword in cancer therapy.
    Meng MB; Zaorsky NG; Deng L; Wang HH; Chao J; Zhao LJ; Yuan ZY; Ping W
    Future Oncol; 2015; 11(1):169-79. PubMed ID: 25143028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pericytes and vessel maturation during tumor angiogenesis and metastasis.
    Raza A; Franklin MJ; Dudek AZ
    Am J Hematol; 2010 Aug; 85(8):593-8. PubMed ID: 20540157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normalization of the vasculature for treatment of cancer and other diseases.
    Goel S; Duda DG; Xu L; Munn LL; Boucher Y; Fukumura D; Jain RK
    Physiol Rev; 2011 Jul; 91(3):1071-121. PubMed ID: 21742796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy.
    Elebiyo TC; Rotimi D; Evbuomwan IO; Maimako RF; Iyobhebhe M; Ojo OA; Oluba OM; Adeyemi OS
    Cancer Treat Res Commun; 2022; 32():100620. PubMed ID: 35964475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LHT7, a chemically modified heparin, inhibits multiple stages of angiogenesis by blocking VEGF, FGF2 and PDGF-B signaling pathways.
    Chung SW; Bae SM; Lee M; Al-Hilal TA; Lee CK; Kim JK; Kim IS; Kim SY; Byun Y
    Biomaterials; 2015 Jan; 37():271-8. PubMed ID: 25453957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiogenesis in melanoma.
    Mahabeleshwar GH; Byzova TV
    Semin Oncol; 2007 Dec; 34(6):555-65. PubMed ID: 18083379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activated FGF2 signaling pathway in tumor vasculature is essential for acquired resistance to anti-VEGF therapy.
    Ichikawa K; Watanabe Miyano S; Minoshima Y; Matsui J; Funahashi Y
    Sci Rep; 2020 Feb; 10(1):2939. PubMed ID: 32076044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antiangiogenic agents targeting different angiogenic pathways have opposite effects on tumor hypoxia in R-18 human melanoma xenografts.
    Gaustad JV; Simonsen TG; Andersen LMK; Rofstad EK
    BMC Cancer; 2017 Jun; 17(1):411. PubMed ID: 28606060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angiogenesis, lymphangiogenesis, and melanoma metastasis.
    Streit M; Detmar M
    Oncogene; 2003 May; 22(20):3172-9. PubMed ID: 12789293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.