BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21346004)

  • 1. Influence of drug solubility and lipophilicity on transscleral retinal delivery of six corticosteroids.
    Thakur A; Kadam RS; Kompella UB
    Drug Metab Dispos; 2011 May; 39(5):771-81. PubMed ID: 21346004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sclera-choroid-RPE transport of eight β-blockers in human, bovine, porcine, rabbit, and rat models.
    Kadam RS; Cheruvu NP; Edelhauser HF; Kompella UB
    Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):5387-99. PubMed ID: 21282583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of lipophilicity on drug partitioning into sclera, choroid-retinal pigment epithelium, retina, trabecular meshwork, and optic nerve.
    Kadam RS; Kompella UB
    J Pharmacol Exp Ther; 2010 Mar; 332(3):1107-20. PubMed ID: 19926800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Notice of concern: Re: Thakur A, Kadam RS, and Kompella UB (2011) Influence of drug solubility and lipophilicity on transscleral retinal delivery of six corticosteroids. Drug Metab Dispos 39:771-781; doi:10.1124/dmd.110.037408.
    Drug Metab Dispos; 2015 Feb; 43(2):298. PubMed ID: 25581726
    [No Abstract]   [Full Text] [Related]  

  • 5. Bovine and porcine transscleral solute transport: influence of lipophilicity and the Choroid-Bruch's layer.
    Cheruvu NP; Kompella UB
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4513-22. PubMed ID: 17003447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration.
    Amrite AC; Edelhauser HF; Singh SR; Kompella UB
    Mol Vis; 2008 Jan; 14():150-60. PubMed ID: 18334929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophilic prodrug approach for reduced pigment binding and enhanced transscleral retinal delivery of celecoxib.
    Malik P; Kadam RS; Cheruvu NP; Kompella UB
    Mol Pharm; 2012 Mar; 9(3):605-14. PubMed ID: 22256989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of eye pigmentation on transscleral drug delivery.
    Cheruvu NP; Amrite AC; Kompella UB
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):333-41. PubMed ID: 18172110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of an ex vivo model implication for carrier-mediated retinal drug delivery.
    Kansara V; Mitra AK
    Curr Eye Res; 2006 May; 31(5):415-26. PubMed ID: 16714233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling.
    Ranta VP; Urtti A
    Adv Drug Deliv Rev; 2006 Nov; 58(11):1164-81. PubMed ID: 17069929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity.
    Pitkänen L; Ranta VP; Moilanen H; Urtti A
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):641-6. PubMed ID: 15671294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of intraocular pressure (IOP) and choroidal circulation on controlled episcleral drug delivery to retina/vitreous.
    Li J; Lan B; Li X; Sun S; Lu P; Cheng L
    J Control Release; 2016 Dec; 243():78-85. PubMed ID: 27717742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of benzalkonium chloride on transscleral drug delivery.
    Okabe K; Kimura H; Okabe J; Kato A; Shimizu H; Ueda T; Shimada S; Ogura Y
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):703-8. PubMed ID: 15671302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transporter targeted gatifloxacin prodrugs: synthesis, permeability, and topical ocular delivery.
    Vooturi SK; Kadam RS; Kompella UB
    Mol Pharm; 2012 Nov; 9(11):3136-46. PubMed ID: 23003105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacokinetics of intraocular drug delivery of Oregon green 488-labeled triamcinolone by subtenon injection using ocular fluorophotometry in rabbit eyes.
    Lee SJ; Kim ES; Geroski DH; McCarey BE; Edelhauser HF
    Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4506-14. PubMed ID: 18503001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of ocular pigmentation on transscleral delivery of triamcinolone acetonide.
    Du W; Sun S; Xu Y; Li J; Zhao C; Lan B; Chen H; Cheng L
    J Ocul Pharmacol Ther; 2013 Sep; 29(7):633-8. PubMed ID: 23597073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suprachoroidal delivery in a rabbit ex vivo eye model: influence of drug properties, regional differences in delivery, and comparison with intravitreal and intracameral routes.
    Kadam RS; Williams J; Tyagi P; Edelhauser HF; Kompella UB
    Mol Vis; 2013; 19():1198-210. PubMed ID: 23734089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide.
    Robinson MR; Lee SS; Kim H; Kim S; Lutz RJ; Galban C; Bungay PM; Yuan P; Wang NS; Kim J; Csaky KG
    Exp Eye Res; 2006 Mar; 82(3):479-87. PubMed ID: 16168412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RETRACTED: Influence of choroidal neovascularization and biodegradable polymeric particle size on transscleral sustained delivery of triamcinolone acetonide.
    Kadam RS; Tyagi P; Edelhauser HF; Kompella UB
    Int J Pharm; 2012 Sep; 434(1-2):140-7. PubMed ID: 22633904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transscleral-RPE permeability of PEDF and ovalbumin proteins: implications for subconjunctival protein delivery.
    Amaral J; Fariss RN; Campos MM; Robison WG; Kim H; Lutz R; Becerra SP
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4383-92. PubMed ID: 16303924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.