BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21346026)

  • 1. Insertion of a multibasic cleavage site in the haemagglutinin of human influenza H3N2 virus does not increase pathogenicity in ferrets.
    Schrauwen EJA; Bestebroer TM; Munster VJ; de Wit E; Herfst S; Rimmelzwaan GF; Osterhaus ADME; Fouchier RAM
    J Gen Virol; 2011 Jun; 92(Pt 6):1410-1415. PubMed ID: 21346026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insertion of a multibasic cleavage motif into the hemagglutinin of a low-pathogenic avian influenza H6N1 virus induces a highly pathogenic phenotype.
    Munster VJ; Schrauwen EJ; de Wit E; van den Brand JM; Bestebroer TM; Herfst S; Rimmelzwaan GF; Osterhaus AD; Fouchier RA
    J Virol; 2010 Aug; 84(16):7953-60. PubMed ID: 20519405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The multibasic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammals.
    Suguitan AL; Matsuoka Y; Lau YF; Santos CP; Vogel L; Cheng LI; Orandle M; Subbarao K
    J Virol; 2012 Mar; 86(5):2706-14. PubMed ID: 22205751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The multibasic cleavage site in H5N1 virus is critical for systemic spread along the olfactory and hematogenous routes in ferrets.
    Schrauwen EJ; Herfst S; Leijten LM; van Run P; Bestebroer TM; Linster M; Bodewes R; Kreijtz JH; Rimmelzwaan GF; Osterhaus AD; Fouchier RA; Kuiken T; van Riel D
    J Virol; 2012 Apr; 86(7):3975-84. PubMed ID: 22278228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viral Factors Important for Efficient Replication of Influenza A Viruses in Cells of the Central Nervous System.
    Siegers JY; van de Bildt MWG; Lin Z; Leijten LM; Lavrijssen RAM; Bestebroer T; Spronken MIJ; De Zeeuw CI; Gao Z; Schrauwen EJA; Kuiken T; van Riel D
    J Virol; 2019 Jun; 93(11):. PubMed ID: 30867311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zoonotic Risk, Pathogenesis, and Transmission of Avian-Origin H3N2 Canine Influenza Virus.
    Sun H; Blackmon S; Yang G; Waters K; Li T; Tangwangvivat R; Xu Y; Shyu D; Wen F; Cooley J; Senter L; Lin X; Jarman R; Hanson L; Webby R; Wan XF
    J Virol; 2017 Nov; 91(21):. PubMed ID: 28814512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Replication-Defective Influenza Virus Harboring H5 and H7 Hemagglutinins Provides Protection against H5N1 and H7N9 Infection in Mice.
    Tian X; Landreth S; Lu Y; Pandey K; Zhou Y
    J Virol; 2021 Jan; 95(3):. PubMed ID: 33177192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets.
    Imai M; Watanabe T; Hatta M; Das SC; Ozawa M; Shinya K; Zhong G; Hanson A; Katsura H; Watanabe S; Li C; Kawakami E; Yamada S; Kiso M; Suzuki Y; Maher EA; Neumann G; Kawaoka Y
    Nature; 2012 May; 486(7403):420-8. PubMed ID: 22722205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Single Amino Acid Substitution at Residue 218 of Hemagglutinin Improves the Growth of Influenza A(H7N9) Candidate Vaccine Viruses.
    Li X; Gao Y; Ye Z
    J Virol; 2019 Oct; 93(19):. PubMed ID: 31270231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosylation of the Hemagglutinin Protein of H5N1 Influenza Virus Increases Its Virulence in Mice by Exacerbating the Host Immune Response.
    Zhao D; Liang L; Wang S; Nakao T; Li Y; Liu L; Guan Y; Fukuyama S; Bu Z; Kawaoka Y; Chen H
    J Virol; 2017 Apr; 91(7):. PubMed ID: 28100622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of key amino acid substitutions in the hemagglutinin of influenza A (H3N2) viruses on vaccine production and antibody response.
    Chen Z; Zhou H; Jin H
    Vaccine; 2010 May; 28(24):4079-85. PubMed ID: 20399830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of an H4N2 influenza virus from Quails with a multibasic motif in the hemagglutinin cleavage site.
    Wong SS; Yoon SW; Zanin M; Song MS; Oshansky C; Zaraket H; Sonnberg S; Rubrum A; Seiler P; Ferguson A; Krauss S; Cardona C; Webby RJ; Crossley B
    Virology; 2014 Nov; 468-470():72-80. PubMed ID: 25151061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation tryptophan to leucine at position 222 of haemagglutinin could facilitate H3N2 influenza A virus infection in dogs.
    Yang G; Li S; Blackmon S; Ye J; Bradley KC; Cooley J; Smith D; Hanson L; Cardona C; Steinhauer DA; Webby R; Liao M; Wan XF
    J Gen Virol; 2013 Dec; 94(Pt 12):2599-2608. PubMed ID: 23994833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemagglutinins of Avian Influenza Viruses Are Proteolytically Activated by TMPRSS2 in Human and Murine Airway Cells.
    Bestle D; Limburg H; Kruhl D; Harbig A; Stein DA; Moulton H; Matrosovich M; Abdelwhab EM; Stech J; Böttcher-Friebertshäuser E
    J Virol; 2021 Sep; 95(20):e0090621. PubMed ID: 34319155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino Acids in Hemagglutinin Antigenic Site B Determine Antigenic and Receptor Binding Differences between A(H3N2)v and Ancestral Seasonal H3N2 Influenza Viruses.
    Wang X; Ilyushina NA; Lugovtsev VY; Bovin NV; Couzens LK; Gao J; Donnelly RP; Eichelberger MC; Wan H
    J Virol; 2017 Jan; 91(2):. PubMed ID: 27807224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathogenicity and transmissibility of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 genes in pigs.
    Ma J; Shen H; Liu Q; Bawa B; Qi W; Duff M; Lang Y; Lee J; Yu H; Bai J; Tong G; Hesse RA; Richt JA; Ma W
    J Virol; 2015 Mar; 89(5):2831-41. PubMed ID: 25540372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H9N2 influenza virus acquires intravenous pathogenicity on the introduction of a pair of di-basic amino acid residues at the cleavage site of the hemagglutinin and consecutive passages in chickens.
    Soda K; Asakura S; Okamatsu M; Sakoda Y; Kida H
    Virol J; 2011 Feb; 8():64. PubMed ID: 21310053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insertion of Basic Amino Acids in the Hemagglutinin Cleavage Site of H4N2 Avian Influenza Virus (AIV)-Reduced Virus Fitness in Chickens is Restored by Reassortment with Highly Pathogenic H5N1 AIV.
    Gischke M; Ulrich R; I Fatola O; Scheibner D; Salaheldin AH; Crossley B; Böttcher-Friebertshäuser E; Veits J; Mettenleiter TC; Abdelwhab EM
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32231159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influenza virus activating host proteases: Identification, localization and inhibitors as potential therapeutics.
    Garten W; Braden C; Arendt A; Peitsch C; Baron J; Lu Y; Pawletko K; Hardes K; Steinmetzer T; Böttcher-Friebertshäuser E
    Eur J Cell Biol; 2015; 94(7-9):375-83. PubMed ID: 26095298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restricted infectivity of a human-Lineage H3N2 influenza A virus in pigs is hemagglutinin and neuraminidase gene dependent.
    Landolt GA; Karasin AI; Schutten MM; Olsen CW
    J Clin Microbiol; 2006 Feb; 44(2):297-301. PubMed ID: 16455873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.