BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 21346173)

  • 21. Regulation of chloroplast translation: interactions of RNA elements, RNA-binding proteins and the plastid ribosome.
    Manuell A; Beligni MV; Yamaguchi K; Mayfield SP
    Biochem Soc Trans; 2004 Aug; 32(Pt 4):601-5. PubMed ID: 15270686
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disruption of plastid-encoded RNA polymerase genes in tobacco: expression of only a distinct set of genes is not based on selective transcription of the plastid chromosome.
    Krause K; Maier RM; Kofer W; Krupinska K; Herrmann RG
    Mol Gen Genet; 2000 Jul; 263(6):1022-30. PubMed ID: 10954088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The E domains of pentatricopeptide repeat proteins from different organelles are not functionally equivalent for RNA editing.
    Chateigner-Boutin AL; Colas des Francs-Small C; Fujii S; Okuda K; Tanz SK; Small I
    Plant J; 2013 Jun; 74(6):935-45. PubMed ID: 23521509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative analysis of RNA editing sites in higher plant chloroplasts.
    Tsudzuki T; Wakasugi T; Sugiura M
    J Mol Evol; 2001; 53(4-5):327-32. PubMed ID: 11675592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stable native RIP9 complexes associate with C-to-U RNA editing activity, PPRs, RIPs, OZ1, ORRM1 and ISE2.
    Sandoval R; Boyd RD; Kiszter AN; Mirzakhanyan Y; SantibaƄez P; Gershon PD; Hayes ML
    Plant J; 2019 Sep; 99(6):1116-1126. PubMed ID: 31077462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Post-transcriptional regulation of chloroplast gene expression].
    Sugita M; Hirose T; Sugiura M
    Tanpakushitsu Kakusan Koso; 2000 Feb; 45(2):132-8. PubMed ID: 10667068
    [No Abstract]   [Full Text] [Related]  

  • 27. OsMORF9 is necessary for chloroplast development and seedling survival in rice.
    Zhang Q; Wang Y; Xie W; Chen C; Ren D; Hu J; Zhu L; Zhang G; Gao Z; Guo L; Zeng D; Shen L; Qian Q
    Plant Sci; 2021 Jun; 307():110907. PubMed ID: 33902846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chloroplast RNA-binding proteins: repair and regulation of chloroplast transcripts.
    Tillich M; Beick S; Schmitz-Linneweber C
    RNA Biol; 2010; 7(2):172-8. PubMed ID: 20215878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chloroplast RNA-binding proteins.
    Nickelsen J
    Curr Genet; 2003 Sep; 43(6):392-9. PubMed ID: 12955455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel tetratricopeptide repeat protein, WHITE TO GREEN1, is required for early chloroplast development and affects RNA editing in chloroplasts.
    Ma F; Hu Y; Ju Y; Jiang Q; Cheng Z; Zhang Q; Sodmergen
    J Exp Bot; 2017 Dec; 68(21-22):5829-5843. PubMed ID: 29140512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chloroplast ribonucleoproteins function as a stabilizing factor of ribosome-free mRNAs in the stroma.
    Nakamura T; Ohta M; Sugiura M; Sugita M
    J Biol Chem; 2001 Jan; 276(1):147-52. PubMed ID: 11038367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA-binding proteins for organellar RNAs in plants.
    Nakamura T; Yagi Y; Kobayashi K
    Plant Cell Physiol; 2012 Jul; 53(7):1171-9. PubMed ID: 22576772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cluster analysis and comparison of various chloroplast transcriptomes and genes in Arabidopsis thaliana.
    Cho WK; Geimer S; Meurer J
    DNA Res; 2009 Feb; 16(1):31-44. PubMed ID: 19106172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. LEFKOTHEA Regulates Nuclear and Chloroplast mRNA Splicing in Plants.
    Daras G; Rigas S; Alatzas A; Samiotaki M; Chatzopoulos D; Tsitsekian D; Papadaki V; Templalexis D; Banilas G; Athanasiadou AM; Kostourou V; Panayotou G; Hatzopoulos P
    Dev Cell; 2019 Sep; 50(6):767-779.e7. PubMed ID: 31447263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The RNA editing factor DUA1 is crucial to chloroplast development at low temperature in rice.
    Cui X; Wang Y; Wu J; Han X; Gu X; Lu T; Zhang Z
    New Phytol; 2019 Jan; 221(2):834-849. PubMed ID: 30295937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana.
    Ems SC; Morden CW; Dixon CK; Wolfe KH; dePamphilis CW; Palmer JD
    Plant Mol Biol; 1995 Nov; 29(4):721-33. PubMed ID: 8541499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional Slippage and RNA Editing Increase the Diversity of Transcripts in Chloroplasts: Insight from Deep Sequencing of Vigna radiata Genome and Transcriptome.
    Lin CP; Ko CY; Kuo CI; Liu MS; Schafleitner R; Chen LF
    PLoS One; 2015; 10(6):e0129396. PubMed ID: 26076132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript accD RNA editing and early chloroplast biogenesis in Arabidopsis thaliana.
    Yu QB; Jiang Y; Chong K; Yang ZN
    Plant J; 2009 Sep; 59(6):1011-23. PubMed ID: 19500301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of the chloroplast adenosine-to-inosine tRNA editing enzyme.
    Karcher D; Bock R
    RNA; 2009 Jul; 15(7):1251-7. PubMed ID: 19460869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arabidopsis chloroplast quantitative editotype.
    Ruwe H; Castandet B; Schmitz-Linneweber C; Stern DB
    FEBS Lett; 2013 May; 587(9):1429-33. PubMed ID: 23523919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.