These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21346239)

  • 1. Phosphate enhances myosin-powered actin filament velocity under acidic conditions in a motility assay.
    Debold EP; Turner MA; Stout JC; Walcott S
    Am J Physiol Regul Integr Comp Physiol; 2011 Jun; 300(6):R1401-8. PubMed ID: 21346239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of phosphate and acidosis on regulated thin-filament velocity in an in vitro motility assay.
    Debold EP; Longyear TJ; Turner MA
    J Appl Physiol (1985); 2012 Nov; 113(9):1413-22. PubMed ID: 23019317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acidosis affects muscle contraction by slowing the rates myosin attaches to and detaches from actin.
    Jarvis K; Woodward M; Debold EP; Walcott S
    J Muscle Res Cell Motil; 2018 Aug; 39(3-4):135-147. PubMed ID: 30382520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An accelerated state of myosin-based actin motility.
    Hooft AM; Maki EJ; Cox KK; Baker JE
    Biochemistry; 2007 Mar; 46(11):3513-20. PubMed ID: 17302393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of low pH on single skeletal muscle myosin mechanics and kinetics.
    Debold EP; Beck SE; Warshaw DM
    Am J Physiol Cell Physiol; 2008 Jul; 295(1):C173-9. PubMed ID: 18480297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocities of unloaded muscle filaments are not limited by drag forces imposed by myosin cross-bridges.
    Brizendine RK; Alcala DB; Carter MS; Haldeman BD; Facemyer KC; Baker JE; Cremo CR
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11235-40. PubMed ID: 26294254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidosis and Phosphate Directly Reduce Myosin's Force-Generating Capacity Through Distinct Molecular Mechanisms.
    Woodward M; Debold EP
    Front Physiol; 2018; 9():862. PubMed ID: 30042692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate and ADP differently inhibit coordinated smooth muscle myosin groups.
    Hilbert L; Balassy Z; Zitouni NB; Mackey MC; Lauzon AM
    Biophys J; 2015 Feb; 108(3):622-31. PubMed ID: 25650929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The direct molecular effects of fatigue and myosin regulatory light chain phosphorylation on the actomyosin contractile apparatus.
    Greenberg MJ; Mealy TR; Jones M; Szczesna-Cordary D; Moore JR
    Am J Physiol Regul Integr Comp Physiol; 2010 Apr; 298(4):R989-96. PubMed ID: 20089714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-myosin crossbridge interactions with actin filaments regulated by troponin-tropomyosin.
    Kad NM; Kim S; Warshaw DM; VanBuren P; Baker JE
    Proc Natl Acad Sci U S A; 2005 Nov; 102(47):16990-5. PubMed ID: 16287977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of inorganic phosphate and pH on ATP utilization in fast and slow skeletal muscle fibers.
    Potma EJ; van Graas IA; Stienen GJ
    Biophys J; 1995 Dec; 69(6):2580-9. PubMed ID: 8599665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical coupling between myosin molecules causes differences between ensemble and single-molecule measurements.
    Walcott S; Warshaw DM; Debold EP
    Biophys J; 2012 Aug; 103(3):501-510. PubMed ID: 22947866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biochemical kinetics underlying actin movement generated by one and many skeletal muscle myosin molecules.
    Baker JE; Brosseau C; Joel PB; Warshaw DM
    Biophys J; 2002 Apr; 82(4):2134-47. PubMed ID: 11916869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of inorganic phosphate and ADP on the myofilament sliding induced by laser flash photolysis of caged ATP.
    Wada H; Yamada T; Sugi H
    Biochim Biophys Acta; 1996 Jun; 1274(3):89-93. PubMed ID: 8664308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of contraction in striated muscle.
    Gordon AM; Homsher E; Regnier M
    Physiol Rev; 2000 Apr; 80(2):853-924. PubMed ID: 10747208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persisting in vitro actin motility at nanomolar adenosine triphosphate levels: comparison of skeletal and cardiac myosins.
    Kellermayer MS; Hinds TR; Pollack GH
    Physiol Chem Phys Med NMR; 1995; 27(3):167-78. PubMed ID: 8868577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sliding distance per ATP molecule hydrolyzed by myosin heads during isotonic shortening of skinned muscle fibers.
    Higuchi H; Goldman YE
    Biophys J; 1995 Oct; 69(4):1491-507. PubMed ID: 8534820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron Microscopic Recording of the Power and Recovery Strokes of Individual Myosin Heads Coupled with ATP Hydrolysis: Facts and Implications.
    Sugi H; Chaen S; Akimoto T
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29734671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myosin's powerstroke occurs prior to the release of phosphate from the active site.
    Scott B; Marang C; Woodward M; Debold EP
    Cytoskeleton (Hoboken); 2021 May; 78(5):185-198. PubMed ID: 34331410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiotonic bipyridine amrinone slows myosin-induced actin filament sliding at saturating [MgATP].
    Klinth J; Arner A; Månsson A
    J Muscle Res Cell Motil; 2003; 24(1):15-32. PubMed ID: 12953834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.