BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21346997)

  • 1. A fast algorithm for learning epistatic genomic relationships.
    Jiang X; Neapolitan RE; Barmada MM; Visweswaran S; Cooper GF
    AMIA Annu Symp Proc; 2010 Nov; 2010():341-5. PubMed ID: 21346997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic studies of complex human diseases: characterizing SNP-disease associations using Bayesian networks.
    Han B; Chen XW; Talebizadeh Z; Xu H
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S14. PubMed ID: 23281790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning genetic epistasis using Bayesian network scoring criteria.
    Jiang X; Neapolitan RE; Barmada MM; Visweswaran S
    BMC Bioinformatics; 2011 Mar; 12():89. PubMed ID: 21453508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LEAP: biomarker inference through learning and evaluating association patterns.
    Jiang X; Neapolitan RE
    Genet Epidemiol; 2015 Mar; 39(3):173-84. PubMed ID: 25677188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mining pure, strict epistatic interactions from high-dimensional datasets: ameliorating the curse of dimensionality.
    Jiang X; Neapolitan RE
    PLoS One; 2012; 7(10):e46771. PubMed ID: 23071633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cuckoo search epistasis: a new method for exploring significant genetic interactions.
    Aflakparast M; Salimi H; Gerami A; Dubé MP; Visweswaran S; Masoudi-Nejad A
    Heredity (Edinb); 2014 Jun; 112(6):666-74. PubMed ID: 24549111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GESLM algorithm for detecting causal SNPs in GWAS with multiple phenotypes.
    Lyu R; Sun J; Xu D; Jiang Q; Wei C; Zhang Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34323927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SMMB: a stochastic Markov blanket framework strategy for epistasis detection in GWAS.
    Niel C; Sinoquet C; Dina C; Rocheleau G
    Bioinformatics; 2018 Aug; 34(16):2773-2780. PubMed ID: 29547902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovering causal interactions using Bayesian network scoring and information gain.
    Zeng Z; Jiang X; Neapolitan R
    BMC Bioinformatics; 2016 May; 17(1):221. PubMed ID: 27230078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. bNEAT: a Bayesian network method for detecting epistatic interactions in genome-wide association studies.
    Han B; Chen XW
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S9. PubMed ID: 21989368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epi-GTBN: an approach of epistasis mining based on genetic Tabu algorithm and Bayesian network.
    Guo Y; Zhong Z; Yang C; Hu J; Jiang Y; Liang Z; Gao H; Liu J
    BMC Bioinformatics; 2019 Aug; 20(1):444. PubMed ID: 31455207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GEP-EpiSeeker: a gene expression programming-based method for epistatic interaction detection in genome-wide association studies.
    Peng YZ; Lin Y; Huang Y; Li Y; Luo G; Liao J
    BMC Genomics; 2021 Dec; 22(Suppl 1):910. PubMed ID: 34930147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure.
    Leem S; Jeong HH; Lee J; Wee K; Sohn KA
    Comput Biol Chem; 2014 Jun; 50():19-28. PubMed ID: 24581733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative analysis of methods for predicting clinical outcomes using high-dimensional genomic datasets.
    Jiang X; Cai B; Xue D; Lu X; Cooper GF; Neapolitan RE
    J Am Med Inform Assoc; 2014 Oct; 21(e2):e312-9. PubMed ID: 24737607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies.
    Wang J; Joshi T; Valliyodan B; Shi H; Liang Y; Nguyen HT; Zhang J; Xu D
    BMC Genomics; 2015 Nov; 16():1011. PubMed ID: 26607428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EpiMOGA: An Epistasis Detection Method Based on a Multi-Objective Genetic Algorithm.
    Chen Y; Xu F; Pian C; Xu M; Kong L; Fang J; Li Z; Zhang L
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33525573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Objective Artificial Bee Colony Algorithm Based on Scale-Free Network for Epistasis Detection.
    Gu Y; Sun Y; Shang J; Li F; Guan B; Liu JX
    Genes (Basel); 2022 May; 13(5):. PubMed ID: 35627256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying genetic interactions in genome-wide data using Bayesian networks.
    Jiang X; Barmada MM; Visweswaran S
    Genet Epidemiol; 2010 Sep; 34(6):575-81. PubMed ID: 20568290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Searching Genome-Wide Multi-Locus Associations for Multiple Diseases Based on Bayesian Inference.
    Guo X; Zhang J; Cai Z; Du DZ; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):600-610. PubMed ID: 26887006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Approach of Epistasis Detection Using Integer Linear Programming Optimizing Bayesian Network.
    Yang X; Yang C; Lei J; Liu J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2654-2671. PubMed ID: 34181547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.