These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 21347109)
1. High-Performance Signal Detection for Adverse Drug Events using MapReduce Paradigm. Fan K; Sun X; Tao Y; Xu L; Wang C; Mao X; Peng B; Pan Y AMIA Annu Symp Proc; 2010 Nov; 2010():902-6. PubMed ID: 21347109 [TBL] [Abstract][Full Text] [Related]
2. Mining association patterns of drug-interactions using post marketing FDA's spontaneous reporting data. Ibrahim H; Saad A; Abdo A; Sharaf Eldin A J Biomed Inform; 2016 Apr; 60():294-308. PubMed ID: 26903152 [TBL] [Abstract][Full Text] [Related]
3. Data mining methodology for response to hypertension symptomology-application to COVID-19-related pharmacovigilance. Xu X; Kawakami J; Millagaha Gedara NI; Riviere JE; Meyer E; Wyckoff GJ; Jaberi-Douraki M Elife; 2021 Nov; 10():. PubMed ID: 34812146 [TBL] [Abstract][Full Text] [Related]
4. Facilitating adverse drug event detection in pharmacovigilance databases using molecular structure similarity: application to rhabdomyolysis. Vilar S; Harpaz R; Chase HS; Costanzi S; Rabadan R; Friedman C J Am Med Inform Assoc; 2011 Dec; 18 Suppl 1(Suppl 1):i73-80. PubMed ID: 21946238 [TBL] [Abstract][Full Text] [Related]
5. A simple method for exploring adverse drug events in patients with different primary diseases using spontaneous reporting system. Noguchi Y; Ueno A; Otsubo M; Katsuno H; Sugita I; Kanematsu Y; Yoshida A; Esaki H; Tachi T; Teramachi H BMC Bioinformatics; 2018 Apr; 19(1):124. PubMed ID: 29621976 [TBL] [Abstract][Full Text] [Related]
9. A prediction model-based algorithm for computer-assisted database screening of adverse drug reactions in the Netherlands. Scholl JHG; van Hunsel FPAM; Hak E; van Puijenbroek EP Pharmacoepidemiol Drug Saf; 2018 Feb; 27(2):199-205. PubMed ID: 29271017 [TBL] [Abstract][Full Text] [Related]
10. Towards early detection of adverse drug reactions: combining pre-clinical drug structures and post-market safety reports. Liu R; Zhang P BMC Med Inform Decis Mak; 2019 Dec; 19(1):279. PubMed ID: 31849321 [TBL] [Abstract][Full Text] [Related]
11. Application of data mining techniques in pharmacovigilance. Wilson AM; Thabane L; Holbrook A Br J Clin Pharmacol; 2004 Feb; 57(2):127-34. PubMed ID: 14748811 [TBL] [Abstract][Full Text] [Related]
12. Signal detection of human papillomavirus vaccines using the Korea Adverse Events Reporting System database, between 2005 and 2016. Ran J; Yang JY; Lee JH; Kim HJ; Choi JY; Shin JY Int J Clin Pharm; 2019 Oct; 41(5):1365-1372. PubMed ID: 31313003 [TBL] [Abstract][Full Text] [Related]
13. Making Sense of Pharmacovigilance and Drug Adverse Event Reporting: Comparative Similarity Association Analysis Using AI Machine Learning Algorithms in Dogs and Cats. Xu X; Mazloom R; Goligerdian A; Staley J; Amini M; Wyckoff GJ; Riviere J; Jaberi-Douraki M Top Companion Anim Med; 2019 Dec; 37():100366. PubMed ID: 31837760 [TBL] [Abstract][Full Text] [Related]
14. Data mining in pharmacovigilance--detecting the unexpected: the role of index of suspicion of the reporter. Sundström A; Hallberg P Drug Saf; 2009; 32(5):419-27. PubMed ID: 19419236 [TBL] [Abstract][Full Text] [Related]
15. Multinomial modeling and an evaluation of common data-mining algorithms for identifying signals of disproportionate reporting in pharmacovigilance databases. Johnson K; Guo C; Gosink M; Wang V; Hauben M Bioinformatics; 2012 Dec; 28(23):3123-30. PubMed ID: 23064001 [TBL] [Abstract][Full Text] [Related]
16. Retrofitting Vector Representations of Adverse Event Reporting Data to Structured Knowledge to Improve Pharmacovigilance Signal Detection. Ding X; Cohen T AMIA Annu Symp Proc; 2020; 2020():383-392. PubMed ID: 33936411 [TBL] [Abstract][Full Text] [Related]
17. Significance of data mining in routine signal detection: Analysis based on the safety signals identified by the FDA. Fukazawa C; Hinomura Y; Kaneko M; Narukawa M Pharmacoepidemiol Drug Saf; 2018 Dec; 27(12):1402-1408. PubMed ID: 30324671 [TBL] [Abstract][Full Text] [Related]
18. From narrative descriptions to MedDRA: automagically encoding adverse drug reactions. Combi C; Zorzi M; Pozzani G; Moretti U; Arzenton E J Biomed Inform; 2018 Aug; 84():184-199. PubMed ID: 29981491 [TBL] [Abstract][Full Text] [Related]
19. Augmenting aer2vec: Enriching distributed representations of adverse event report data with orthographic and lexical information. Ding X; Mower J; Subramanian D; Cohen T J Biomed Inform; 2021 Jul; 119():103833. PubMed ID: 34111555 [TBL] [Abstract][Full Text] [Related]
20. Useful Interplay Between Spontaneous ADR Reports and Electronic Healthcare Records in Signal Detection. Pacurariu AC; Straus SM; Trifirò G; Schuemie MJ; Gini R; Herings R; Mazzaglia G; Picelli G; Scotti L; Pedersen L; Arlett P; van der Lei J; Sturkenboom MC; Coloma PM Drug Saf; 2015 Dec; 38(12):1201-10. PubMed ID: 26370104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]