These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21347179)

  • 1. A Comparative Study of Metabolic Network Topology between a Pathogenic and a Non-Pathogenic Bacterium for Potential Drug Target Identification.
    Perumal D; Lim CS; Sakharkar MK
    Summit Transl Bioinform; 2009 Mar; 2009():100-4. PubMed ID: 21347179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observing local and global properties of metabolic pathways: 'load points' and 'choke points' in the metabolic networks.
    Rahman SA; Schomburg D
    Bioinformatics; 2006 Jul; 22(14):1767-74. PubMed ID: 16682421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein interaction network analysis--approach for potential drug target identification in Mycobacterium tuberculosis.
    Kushwaha SK; Shakya M
    J Theor Biol; 2010 Jan; 262(2):284-94. PubMed ID: 19833135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FindTargetsWEB: A User-Friendly Tool for Identification of Potential Therapeutic Targets in Metabolic Networks of Bacteria.
    Merigueti TC; Carneiro MW; Carvalho-Assef APD; Silva-Jr FP; da Silva FAB
    Front Genet; 2019; 10():633. PubMed ID: 31333719
    [No Abstract]   [Full Text] [Related]  

  • 6. Human metabolic network reconstruction and its impact on drug discovery and development.
    Ma H; Goryanin I
    Drug Discov Today; 2008 May; 13(9-10):402-8. PubMed ID: 18468557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in silico approach towards identification of novel drug targets in pathogenic species of Leptospira.
    Gupta R; Verma R; Pradhan D; Jain AK; Umamaheswari A; Rai CS
    PLoS One; 2019; 14(8):e0221446. PubMed ID: 31430340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism.
    Nikel PI; de Lorenzo V
    Metab Eng; 2018 Nov; 50():142-155. PubMed ID: 29758287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology.
    Puchałka J; Oberhardt MA; Godinho M; Bielecka A; Regenhardt D; Timmis KN; Papin JA; Martins dos Santos VA
    PLoS Comput Biol; 2008 Oct; 4(10):e1000210. PubMed ID: 18974823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440.
    Wittgens A; Tiso T; Arndt TT; Wenk P; Hemmerich J; Müller C; Wichmann R; Küpper B; Zwick M; Wilhelm S; Hausmann R; Syldatk C; Rosenau F; Blank LM
    Microb Cell Fact; 2011 Oct; 10():80. PubMed ID: 21999513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Phosphoribosyl-AMP cyclohydrolase, as drug target and its inhibitors in Brucella melitensis bv. 1 16M using metabolic pathway analysis.
    Gupta M; Prasad Y; Sharma SK; Jain CK
    J Biomol Struct Dyn; 2017 Feb; 35(2):287-299. PubMed ID: 26725317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440.
    Nelson KE; Weinel C; Paulsen IT; Dodson RJ; Hilbert H; Martins dos Santos VA; Fouts DE; Gill SR; Pop M; Holmes M; Brinkac L; Beanan M; DeBoy RT; Daugherty S; Kolonay J; Madupu R; Nelson W; White O; Peterson J; Khouri H; Hance I; Chris Lee P; Holtzapple E; Scanlan D; Tran K; Moazzez A; Utterback T; Rizzo M; Lee K; Kosack D; Moestl D; Wedler H; Lauber J; Stjepandic D; Hoheisel J; Straetz M; Heim S; Kiewitz C; Eisen JA; Timmis KN; Düsterhöft A; Tümmler B; Fraser CM
    Environ Microbiol; 2002 Dec; 4(12):799-808. PubMed ID: 12534463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Choke point analysis of metabolic pathways in E.histolytica: a computational approach for drug target identification.
    Singh S; Malik BK; Sharma DK
    Bioinformation; 2007 Oct; 2(2):68-72. PubMed ID: 18188424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systems biology studies in Pseudomonas aeruginosa PA01 to understand their role in biofilm formation and multidrug efflux pumps.
    Miryala SK; Anbarasu A; Ramaiah S
    Microb Pathog; 2019 Nov; 136():103668. PubMed ID: 31419460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory.
    Nogales J; Palsson BØ; Thiele I
    BMC Syst Biol; 2008 Sep; 2():79. PubMed ID: 18793442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting multiple targets in Pseudomonas aeruginosa PAO1 using flux balance analysis of a reconstructed genome-scale metabolic network.
    Perumal D; Samal A; Sakharkar KR; Sakharkar MK
    J Drug Target; 2011 Jan; 19(1):1-13. PubMed ID: 20233082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities.
    Nogales J; Mueller J; Gudmundsson S; Canalejo FJ; Duque E; Monk J; Feist AM; Ramos JL; Niu W; Palsson BO
    Environ Microbiol; 2020 Jan; 22(1):255-269. PubMed ID: 31657101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of reciprocal adhesion genes in pathogenic and non-pathogenic Pseudomonas.
    Duque E; de la Torre J; Bernal P; Molina-Henares MA; Alaminos M; Espinosa-Urgel M; Roca A; Fernández M; de Bentzmann S; Ramos JL
    Environ Microbiol; 2013 Jan; 15(1):36-48. PubMed ID: 22458445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways.
    Minato Y; Gohl DM; Thiede JM; Chacón JM; Harcombe WR; Maruyama F; Baughn AD
    mSystems; 2019 Jun; 4(4):. PubMed ID: 31239393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TpiA is a Key Metabolic Enzyme That Affects Virulence and Resistance to Aminoglycoside Antibiotics through CrcZ in Pseudomonas aeruginosa.
    Xia Y; Wang D; Pan X; Xia B; Weng Y; Long Y; Ren H; Zhou J; Jin Y; Bai F; Cheng Z; Jin S; Wu W
    mBio; 2020 Jan; 11(1):. PubMed ID: 31911486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.