BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 21347667)

  • 41. Immobilization of Aspergillus niger lipase on chitosan-coated magnetic nanoparticles using two covalent-binding methods.
    Osuna Y; Sandoval J; Saade H; López RG; Martinez JL; Colunga EM; de la Cruz G; Segura EP; Arévalo FJ; Zon MA; Fernández H; Ilyina A
    Bioprocess Biosyst Eng; 2015 Aug; 38(8):1437-45. PubMed ID: 25759161
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of oxidation level of n(+)-type mesoporous silicon surface on the adsorption and the catalytic activity of Candida rugosa lipase.
    Salis A; Cugia F; Setzu S; Mula G; Monduzzi M
    J Colloid Interface Sci; 2010 May; 345(2):448-53. PubMed ID: 20188377
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Covalent-bonded immobilization of lipase on poly(phenylene sulfide) dendrimers and their hydrolysis ability.
    Yemul O; Imae T
    Biomacromolecules; 2005; 6(5):2809-14. PubMed ID: 16153122
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pretreatment of Candida rugosa lipase with soybean oil before immobilization on beta-cyclodextrin-based polymer.
    Ozmen EY; Yilmaz M
    Colloids Surf B Biointerfaces; 2009 Feb; 69(1):58-62. PubMed ID: 19091527
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Immobilization of Pseudomonas stutzeri lipase for the transesterification of wood sterols with fatty acid esters.
    Fauré N; Illanes A
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1332-41. PubMed ID: 21887523
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reversible immobilization of Candida rugosa lipase on fibrous polymer grafted and sulfonated p(HEMA/EGDMA) beads.
    Yakup Arica M; Soydogan H; Bayramoglu G
    Bioprocess Biosyst Eng; 2010 Feb; 33(2):227-36. PubMed ID: 19350276
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Immobilization and stability of lipase from Mucor racemosus NRRL 3631.
    Adham NZ; Ahmed HM; Naim N
    J Microbiol Biotechnol; 2010 Feb; 20(2):332-9. PubMed ID: 20208437
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immobilization of lipase from Mucor miehei and Rhizopus oryzae into mesoporous silica--the effect of varied particle size and morphology.
    Gustafsson H; Johansson EM; Barrabino A; Odén M; Holmberg K
    Colloids Surf B Biointerfaces; 2012 Dec; 100():22-30. PubMed ID: 22750108
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Immobilization of Thermomyces lanuginosus lipase by different techniques on Immobead 150 support: characterization and applications.
    Matte CR; Bussamara R; Dupont J; Rodrigues RC; Hertz PF; Ayub MA
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2507-20. PubMed ID: 24398921
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lipase immobilization on differently functionalized vinyl-based amphiphilic polymers: influence of phase segregation on the enzyme hydrolytic activity.
    Bellusci M; Francolini I; Martinelli A; D'Ilario L; Piozzi A
    Biomacromolecules; 2012 Mar; 13(3):805-13. PubMed ID: 22295868
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports.
    López-Gallego F; Betancor L; Mateo C; Hidalgo A; Alonso-Morales N; Dellamora-Ortiz G; Guisán JM; Fernández-Lafuente R
    J Biotechnol; 2005 Sep; 119(1):70-5. PubMed ID: 16039744
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Immobilization of enzymes on monofunctional and heterofunctional epoxy-activated supports.
    Mateo C; Grazu V; Guisan JM
    Methods Mol Biol; 2013; 1051():43-57. PubMed ID: 23934797
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of the properties of lipase immobilized onto mesoporous resins by different methods.
    Wang W; Jiang Y; Zhou L; Gao J
    Appl Biochem Biotechnol; 2011 Jul; 164(5):561-72. PubMed ID: 21229333
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel magnetic microspheres of P (GMA-b-HEMA): preparation, lipase immobilization and enzymatic activity in two phases.
    Cui Y; Chen X; Li Y; Liu X; Lei L; Xuan S
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):147-56. PubMed ID: 22159608
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New Heterofunctional Supports Based on Glutaraldehyde-Activation: A Tool for Enzyme Immobilization at Neutral pH.
    Melo RR; Alnoch RC; Vilela AFL; Souza EM; Krieger N; Ruller R; Sato HH; Mateo C
    Molecules; 2017 Jun; 22(7):. PubMed ID: 28788435
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles.
    Dyal A; Loos K; Noto M; Chang SW; Spagnoli C; Shafi KV; Ulman A; Cowman M; Gross RA
    J Am Chem Soc; 2003 Feb; 125(7):1684-5. PubMed ID: 12580578
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrolysis of triacetin catalyzed by immobilized lipases: effect of the immobilization protocol and experimental conditions on diacetin yield.
    Hernandez K; Garcia-Verdugo E; Porcar R; Fernandez-Lafuente R
    Enzyme Microb Technol; 2011 May; 48(6-7):510-7. PubMed ID: 22113024
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Immobilization of pancreatic lipase on chitin and chitosan.
    Kilinç A; Teke M; Onal S; Telefoncu A
    Prep Biochem Biotechnol; 2006; 36(2):153-63. PubMed ID: 16513559
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improved covalent immobilization of horseradish peroxidase on macroporous glycidyl methacrylate-based copolymers.
    Prodanović O; Prokopijević M; Spasojević D; Stojanović Z; Radotić K; Knežević-Jugović ZD; Prodanović R
    Appl Biochem Biotechnol; 2012 Nov; 168(5):1288-301. PubMed ID: 22941271
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application.
    Huang XJ; Yu AG; Xu ZK
    Bioresour Technol; 2008 Sep; 99(13):5459-65. PubMed ID: 18248984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.