These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 21347959)
1. Comparison of air sampling methods for aerosolized spores of B. anthracis Sterne. Estill CF; Baron PA; Beard JK; Hein MJ; Larsen LD; Deye GJ; Rose L; Hodges L J Occup Environ Hyg; 2011 Mar; 8(3):179-86. PubMed ID: 21347959 [TBL] [Abstract][Full Text] [Related]
2. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air. Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489 [TBL] [Abstract][Full Text] [Related]
3. The effect of filter material on bioaerosol collection of Bacillus subtilis spores used as a Bacillus anthracis simulant. Clark Burton N; Adhikari A; Grinshpun SA; Hornung R; Reponen T J Environ Monit; 2005 May; 7(5):475-80. PubMed ID: 15877169 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of vacuum filter sock surface sample collection method for Bacillus spores from porous and non-porous surfaces. Brown GS; Betty RG; Brockmann JE; Lucero DA; Souza CA; Walsh KS; Boucher RM; Tezak MS; Wilson MC J Environ Monit; 2007 Jul; 9(7):666-71. PubMed ID: 17607386 [TBL] [Abstract][Full Text] [Related]
5. Airborne viable, non-viable, and allergenic fungi in a rural agricultural area of India: a 2-year study at five outdoor sampling stations. Adhikari A; Sen MM; Gupta-Bhattacharya S; Chanda S Sci Total Environ; 2004 Jun; 326(1-3):123-41. PubMed ID: 15142771 [TBL] [Abstract][Full Text] [Related]
6. Rapid, high-throughput, culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates. Kane SR; Létant SE; Murphy GA; Alfaro TM; Krauter PW; Mahnke R; Legler TC; Raber E J Microbiol Methods; 2009 Mar; 76(3):278-84. PubMed ID: 19141303 [TBL] [Abstract][Full Text] [Related]
7. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source. Witschger O; Grinshpun SA; Fauvel S; Basso G Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944 [TBL] [Abstract][Full Text] [Related]
8. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler. Harper M; Pacolay B; Hintz P; Andrew ME J Environ Monit; 2006 Mar; 8(3):384-92. PubMed ID: 16528423 [TBL] [Abstract][Full Text] [Related]
9. False-negative rate, limit of detection and recovery efficiency performance of a validated macrofoam-swab sampling method for low surface concentrations of Bacillus anthracis Sterne and Bacillus atrophaeus spores. Piepel GF; Deatherage Kaiser BL; Amidan BG; Sydor MA; Barrett CA; Hutchison JR J Appl Microbiol; 2016 Jul; 121(1):149-62. PubMed ID: 26972788 [TBL] [Abstract][Full Text] [Related]
10. Development and evaluation of an inhalable bioaerosol manifold sampler. Gao P; Dillon HK; Farthing WE Am Ind Hyg Assoc J; 1997 Mar; 58(3):196-206. PubMed ID: 9075310 [TBL] [Abstract][Full Text] [Related]
11. Most-probable-number rapid viability PCR method to detect viable spores of Bacillus anthracis in swab samples. Létant SE; Kane SR; Murphy GA; Alfaro TM; Hodges LR; Rose LJ; Raber E J Microbiol Methods; 2010 May; 81(2):200-2. PubMed ID: 20193716 [TBL] [Abstract][Full Text] [Related]
12. Utilization of the solid sorbent media in monitoring of airborne cyclophosphamide concentrations and the implications for occupational hygiene. Odraska P; Dolezalova L; Piler P; Oravec M; Blaha L J Environ Monit; 2011 May; 13(5):1480-7. PubMed ID: 21468422 [TBL] [Abstract][Full Text] [Related]
13. Interim guidelines for investigation of and response to Bacillus anthracis exposures. Centers for Disease Control and Prevention (CDC) MMWR Morb Mortal Wkly Rep; 2001 Nov; 50(44):987-90. PubMed ID: 11724154 [TBL] [Abstract][Full Text] [Related]
14. Feasibility of selected prophylactic barriers in arrestance of airborne bacterial vegetative cells and endospores. Davidson CS; Green CF; Gibbs SG; Panlilio AL; Jensen PA; Jin Y; Scarpino PV Am J Infect Control; 2011 Sep; 39(7):581-6. PubMed ID: 21570738 [TBL] [Abstract][Full Text] [Related]
15. Development of size-selective sampling of Bacillus anthracis surrogate spores from simulated building air intake mixtures for analysis via laser-induced breakdown spectroscopy. Gibb-Snyder E; Gullett B; Ryan S; Oudejans L; Touati A Appl Spectrosc; 2006 Aug; 60(8):860-70. PubMed ID: 16925921 [TBL] [Abstract][Full Text] [Related]
16. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies. Brouwer DH; Gijsbers JH; Lurvink MW Ann Occup Hyg; 2004 Jul; 48(5):439-53. PubMed ID: 15240340 [TBL] [Abstract][Full Text] [Related]
17. An automated front-end monitor for anthrax surveillance systems based on the rapid detection of airborne endospores. Yung PT; Lester ED; Bearman G; Ponce A Biotechnol Bioeng; 2007 Nov; 98(4):864-71. PubMed ID: 17514759 [TBL] [Abstract][Full Text] [Related]
18. National validation study of a swab protocol for the recovery of Bacillus anthracis spores from surfaces. Hodges LR; Rose LJ; O'Connell H; Arduino MJ J Microbiol Methods; 2010 May; 81(2):141-6. PubMed ID: 20193714 [TBL] [Abstract][Full Text] [Related]
19. Comparison of wood-dust aerosol size-distributions collected by air samplers. Harper M; Akbar MZ; Andrew ME J Environ Monit; 2004 Jan; 6(1):18-22. PubMed ID: 14737465 [TBL] [Abstract][Full Text] [Related]
20. Comparison of three sampling and analytical methods for measuring m-xylene in expired air of exposed humans. Glaser RA; Arnold JE; Shulman SA Am Ind Hyg Assoc J; 1990 Mar; 51(3):139-50. PubMed ID: 2327325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]