BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21348313)

  • 1. [Oral cavity delivery system of unfractionated and low molecular weight heparin].
    Li D; Hou HM
    Yao Xue Xue Bao; 2010 Oct; 45(10):1317-21. PubMed ID: 21348313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conjugation of low-molecular-weight heparin and deoxycholic acid for the development of a new oral anticoagulant agent.
    Lee Y; Nam JH; Shin HC; Byun Y
    Circulation; 2001 Dec; 104(25):3116-20. PubMed ID: 11748110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the intestinal absorption of low molecular weight heparin using saturated fatty acids and their derivatives as an absorption enhancer in rats.
    Mori S; Matsuura A; Rama Prasad YV; Takada K
    Biol Pharm Bull; 2004 Mar; 27(3):418-21. PubMed ID: 14993814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fixed-dose combination of low molecular weight heparin with dihydroergotamine versus adjusted-dose unfractionated heparin in the prevention of deep-vein thrombosis after total hip replacement.
    Horbach T; Wolf H; Michaelis HC; Wagner W; Hoffmann A; Schmidt A; Beck H
    Thromb Haemost; 1996 Feb; 75(2):246-50. PubMed ID: 8815569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal absorption of low molecular weight heparin in animals and human subjects.
    Nissan A; Ziv E; Kidron M; Bar-On H; Friedman G; Hyam E; Eldor A
    Haemostasis; 2000; 30(5):225-32. PubMed ID: 11251329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-responsive thiolated chitosan nanoparticles for oral low-molecular weight heparin delivery: in vitro and in vivo evaluation.
    Fan B; Xing Y; Zheng Y; Sun C; Liang G
    Drug Deliv; 2016; 23(1):238-47. PubMed ID: 24865290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ intestinal absorption studies on low molecular weight heparin in rats using labrasol as absorption enhancer.
    Rama Prasad YV; Minamimoto T; Yoshikawa Y; Shibata N; Mori S; Matsuura A; Takada K
    Int J Pharm; 2004 Mar; 271(1-2):225-32. PubMed ID: 15129989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and evaluation of oral solid heparin using emulsifier and adsorbent for in vitro and in vivo studies.
    Ito Y; Kusawake T; Prasad YV; Sugioka N; Shibata N; Takada K
    Int J Pharm; 2006 Jul; 317(2):114-9. PubMed ID: 16631328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nasal administration of low molecular weight heparin.
    Arnold J; Ahsan F; Meezan E; Pillion DJ
    J Pharm Sci; 2002 Jul; 91(7):1707-14. PubMed ID: 12115833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved microsurgical anastomotic patency with low molecular weight heparin.
    Ritter EF; Cronan JC; Rudner AM; Serafin D; Klitzman B
    J Reconstr Microsurg; 1998 Jul; 14(5):331-6. PubMed ID: 9714039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment.
    Bagre AP; Jain K; Jain NK
    Int J Pharm; 2013 Nov; 456(1):31-40. PubMed ID: 23994363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeated doses of oral and subcutaneous heparins have similar antithrombotic effects in a rat carotid arterial model of thrombosis.
    Hiebert LM; Ping T; Wice SM
    J Cardiovasc Pharmacol Ther; 2012 Mar; 17(1):110-6. PubMed ID: 21512111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-sulfonato-N,O-carboxymethylchitosan: a novel polymeric absorption enhancer for the oral delivery of macromolecules.
    Thanou M; Henderson S; Kydonieus A; Elson C
    J Control Release; 2007 Feb; 117(2):171-8. PubMed ID: 17184870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral heparin delivery: design and in vivo evaluation of a stomach-targeted mucoadhesive delivery system.
    Schmitz T; Leitner VM; Bernkop-Schnürch A
    J Pharm Sci; 2005 May; 94(5):966-73. PubMed ID: 15793802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacokinetic and pharmacodynamic characterization of a medium-molecular-weight heparin in comparison with UFH and LMWH.
    Alban S; Welzel D; Hemker HC
    Semin Thromb Hemost; 2002 Aug; 28(4):369-78. PubMed ID: 12244484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in search of oral heparin therapeutics.
    Paliwal R; Paliwal SR; Agrawal GP; Vyas SP
    Med Res Rev; 2012 Mar; 32(2):388-409. PubMed ID: 21287569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intravenous low-molecular-weight heparins compared with unfractionated heparin in percutaneous coronary intervention: quantitative review of randomized trials.
    Dumaine R; Borentain M; Bertel O; Bode C; Gallo R; White HD; Collet JP; Steinhubl SR; Montalescot G
    Arch Intern Med; 2007 Dec; 167(22):2423-30. PubMed ID: 18071163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of heparin and low-molecular-weight heparin in the rat kidney.
    Young E; Douros V; Podor TJ; Shaughnessy SG; Weitz JI
    Thromb Haemost; 2004 May; 91(5):927-34. PubMed ID: 15116253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased concentrations of heparinoids are required to inhibit thrombin generation in plasma from newborns and children compared to plasma from adults due to reduced thrombin potential.
    Chan AK; Berry LR; Monagle PT; Andrew M
    Thromb Haemost; 2002 Apr; 87(4):606-13. PubMed ID: 12008942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of a low molecular weight heparin administered intravenously or subcutaneously in comparison with intravenous unfractionated heparin in the treatment of deep venous thrombosis. Certoparin-Study Group.
    Kirchmaier CM; Wolf H; Schäfer H; Ehlers B; Breddin HK
    Int Angiol; 1998 Sep; 17(3):135-45. PubMed ID: 9821025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.