BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21348839)

  • 1. Small molecule fluorescent probes for the detection of amyloid self-assembly in vitro and in vivo.
    Bertoncini CW; Celej MS
    Curr Protein Pept Sci; 2011 May; 12(3):205-20. PubMed ID: 21348839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards multiparametric fluorescent imaging of amyloid formation: studies of a YFP model of alpha-synuclein aggregation.
    van Ham TJ; Esposito A; Kumita JR; Hsu ST; Kaminski Schierle GS; Kaminski CF; Dobson CM; Nollen EA; Bertoncini CW
    J Mol Biol; 2010 Jan; 395(3):627-42. PubMed ID: 19891973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interrogating Amyloid Aggregates using Fluorescent Probes.
    Aliyan A; Cook NP; Martí AA
    Chem Rev; 2019 Dec; 119(23):11819-11856. PubMed ID: 31675223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Benzothiazole Derivatives as Fluorescent Probes for Detection of β-Amyloid and α-Synuclein Aggregates.
    Watanabe H; Ono M; Ariyoshi T; Katayanagi R; Saji H
    ACS Chem Neurosci; 2017 Aug; 8(8):1656-1662. PubMed ID: 28467708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy.
    Lindgren M; Sörgjerd K; Hammarström P
    Biophys J; 2005 Jun; 88(6):4200-12. PubMed ID: 15764666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibiting toxic aggregation of amyloidogenic proteins: a therapeutic strategy for protein misfolding diseases.
    Cheng B; Gong H; Xiao H; Petersen RB; Zheng L; Huang K
    Biochim Biophys Acta; 2013 Oct; 1830(10):4860-71. PubMed ID: 23820032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time probing of β-amyloid self-assembly and inhibition using fluorescence self-quenching between neighbouring dyes.
    Quinn SD; Dalgarno PA; Cameron RT; Hedley GJ; Hacker C; Lucocq JM; Baillie GS; Samuel ID; Penedo JC
    Mol Biosyst; 2014 Jan; 10(1):34-44. PubMed ID: 24170094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent N-arylaminonaphthalene sulfonate probes for amyloid aggregation of alpha-synuclein.
    Celej MS; Jares-Erijman EA; Jovin TM
    Biophys J; 2008 Jun; 94(12):4867-79. PubMed ID: 18339734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interrogating amyloid aggregation with aggregation-induced emission fluorescence probes.
    Zhou Y; Hua J; Ding D; Tang Y
    Biomaterials; 2022 Jul; 286():121605. PubMed ID: 35653878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel trans-Stilbene-based Fluorophores as Probes for Spectral Discrimination of Native and Protofibrillar Transthyretin.
    Campos RI; Wu X; Elgland M; Konradsson P; Hammarström P
    ACS Chem Neurosci; 2016 Jul; 7(7):924-40. PubMed ID: 27144293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent Imaging of Amyloid-β Deposits in Brain: An Overview of Probe Development and a Highlight of the Applications for In Vivo Imaging.
    Fu H; Cui M
    Curr Med Chem; 2018; 25(23):2736-2759. PubMed ID: 29446721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A universal method for detection of amyloidogenic misfolded proteins.
    Yam AY; Wang X; Gao CM; Connolly MD; Zuckermann RN; Bleu T; Hall J; Fedynyshyn JP; Allauzen S; Peretz D; Salisbury CM
    Biochemistry; 2011 May; 50(20):4322-9. PubMed ID: 21539296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learnings from Protein Folding Projected onto Amyloid Misfolding.
    Sreenivasan S; Narayan M
    ACS Chem Neurosci; 2019 Sep; 10(9):3911-3913. PubMed ID: 31456389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoimaging for protein misfolding diseases.
    Lyubchenko YL; Kim BH; Krasnoslobodtsev AV; Yu J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2010; 2(5):526-43. PubMed ID: 20665728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid oligomers: spectroscopic characterization of amyloidogenic protein states.
    Lindgren M; Hammarström P
    FEBS J; 2010 Mar; 277(6):1380-8. PubMed ID: 20148961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligo(p-phenylene ethynylene) Electrolytes: A Novel Molecular Scaffold for Optical Tracking of Amyloids.
    Donabedian PL; Pham TK; Whitten DG; Chi EY
    ACS Chem Neurosci; 2015 Sep; 6(9):1526-35. PubMed ID: 26114931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection, inhibition and disintegration of amyloid fibrils: the role of optical probes and macrocyclic receptors.
    Bhasikuttan AC; Mohanty J
    Chem Commun (Camb); 2017 Mar; 53(19):2789-2809. PubMed ID: 28217771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diarylethene based fluorescent switchable probes for the detection of amyloid-β pathology in Alzheimer's disease.
    Lv G; Cui B; Lan H; Wen Y; Sun A; Yi T
    Chem Commun (Camb); 2015 Jan; 51(1):125-8. PubMed ID: 25384304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence Self-Quenching from Reporter Dyes Informs on the Structural Properties of Amyloid Clusters Formed in Vitro and in Cells.
    Chen W; Young LJ; Lu M; Zaccone A; Ströhl F; Yu N; Kaminski Schierle GS; Kaminski CF
    Nano Lett; 2017 Jan; 17(1):143-149. PubMed ID: 28073262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualizing the Multistep Process of Protein Aggregation in Live Cells.
    Ye S; Hsiung CH; Tang Y; Zhang X
    Acc Chem Res; 2022 Feb; 55(3):381-390. PubMed ID: 35040316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.