BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21349178)

  • 1. Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates.
    Lahtvee PJ; Adamberg K; Arike L; Nahku R; Aller K; Vilu R
    Microb Cell Fact; 2011 Feb; 10():12. PubMed ID: 21349178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the adaptation of Lactococcus lactis to isoleucine starvation integrating dynamic transcriptome and proteome information.
    Dressaire C; Redon E; Gitton C; Loubière P; Monnet V; Cocaign-Bousquet M
    Microb Cell Fact; 2011 Aug; 10 Suppl 1(Suppl 1):S18. PubMed ID: 21995707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased biomass yield of Lactococcus lactis by reduced overconsumption of amino acids and increased catalytic activities of enzymes.
    Adamberg K; Seiman A; Vilu R
    PLoS One; 2012; 7(10):e48223. PubMed ID: 23133574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metabolic network of Lactococcus lactis: distribution of (14)C-labeled substrates between catabolic and anabolic pathways.
    Novák L; Loubiere P
    J Bacteriol; 2000 Feb; 182(4):1136-43. PubMed ID: 10648541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutritional requirements and media development for Lactococcus lactis IL1403.
    Aller K; Adamberg K; Timarova V; Seiman A; Feštšenko D; Vilu R
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5871-81. PubMed ID: 24626960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses.
    Dressaire C; Redon E; Milhem H; Besse P; Loubière P; Cocaign-Bousquet M
    BMC Genomics; 2008 Jul; 9():343. PubMed ID: 18644113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein turnover forms one of the highest maintenance costs in Lactococcus lactis.
    Lahtvee PJ; Seiman A; Arike L; Adamberg K; Vilu R
    Microbiology (Reading); 2014 Jul; 160(Pt 7):1501-1512. PubMed ID: 24739216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions.
    Koebmann B; Blank LM; Solem C; Petranovic D; Nielsen LK; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):25-33. PubMed ID: 17824842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task Distribution between Acetate and Acetoin Pathways To Prolong Growth in Lactococcus lactis under Respiration Conditions.
    Cesselin B; Garrigues C; Pedersen MB; Roussel C; Gruss A; Gaudu P
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030222
    [No Abstract]   [Full Text] [Related]  

  • 10. Development of Chemically Defined Media to Express Trp-Analog-Labeled Proteins in a Lactococcus lactis Trp Auxotroph.
    Shao J; Marcondes MF; Oliveira V; Broos J
    J Mol Microbiol Biotechnol; 2016; 26(4):269-76. PubMed ID: 27172771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system.
    Vido K; Le Bars D; Mistou MY; Anglade P; Gruss A; Gaudu P
    J Bacteriol; 2004 Mar; 186(6):1648-57. PubMed ID: 14996795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH.
    Shi W; Li Y; Gao X; Fu R
    Biotechnol Lett; 2016 Mar; 38(3):495-501. PubMed ID: 26585330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome and proteome exploration to model translation efficiency and protein stability in Lactococcus lactis.
    Dressaire C; Gitton C; Loubière P; Monnet V; Queinnec I; Cocaign-Bousquet M
    PLoS Comput Biol; 2009 Dec; 5(12):e1000606. PubMed ID: 20019804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic signature of Lactococcus lactis NCDO763 cultivated in milk.
    Gitton C; Meyrand M; Wang J; Caron C; Trubuil A; Guillot A; Mistou MY
    Appl Environ Microbiol; 2005 Nov; 71(11):7152-63. PubMed ID: 16269754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures.
    Even S; Lindley ND; Cocaign-Bousquet M
    Microbiology (Reading); 2003 Jul; 149(Pt 7):1935-1944. PubMed ID: 12855744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative physiology of Lactococcus lactis at extreme low-growth rates.
    Ercan O; Smid EJ; Kleerebezem M
    Environ Microbiol; 2013 Aug; 15(8):2319-32. PubMed ID: 23461598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of (15)N-labelled yeast hydrolysate in Lactococcus lactis IL1403 culture indicates co-consumption of peptide-bound and free amino acids with simultaneous efflux of free amino acids.
    Kevvai K; Kütt ML; Nisamedtinov I; Paalme T
    Antonie Van Leeuwenhoek; 2014 Mar; 105(3):511-22. PubMed ID: 24389760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory Physiology of Lactococcus lactis in Chemostat Cultures and Its Effect on Cellular Robustness in Frozen and Freeze-Dried Starter Cultures.
    Johanson A; Goel A; Olsson L; Franzén CJ
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31953330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, expression, and functional characterization of secondary amino acid transporters of Lactococcus lactis.
    Trip H; Mulder NL; Lolkema JS
    J Bacteriol; 2013 Jan; 195(2):340-50. PubMed ID: 23144255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of YthA, a PspC Family Transcriptional Regulator of Lactococcus lactis F44 Acid Tolerance and Nisin Yield: a Transcriptomic Approach.
    Wu H; Liu J; Miao S; Zhao Y; Zhu H; Qiao M; Saris PEJ; Qiao J
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29305506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.