BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 21349178)

  • 21. Quasi steady state growth of Lactococcus lactis in glucose-limited acceleration stat (A-stat) cultures.
    Adamberg K; Lahtvee PJ; Valgepea K; Abner K; Vilu R
    Antonie Van Leeuwenhoek; 2009 Mar; 95(3):219-26. PubMed ID: 19184516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and functional characterization of the Lactococcus lactis CodY-regulated branched-chain amino acid permease BcaP (CtrA).
    den Hengst CD; Groeneveld M; Kuipers OP; Kok J
    J Bacteriol; 2006 May; 188(9):3280-9. PubMed ID: 16621821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular and metabolic adaptations of Lactococcus lactis at near-zero growth rates.
    Ercan O; Wels M; Smid EJ; Kleerebezem M
    Appl Environ Microbiol; 2015 Jan; 81(1):320-31. PubMed ID: 25344239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiology and substrate specificity of two closely related amino acid transporters, SerP1 and SerP2, of Lactococcus lactis.
    Noens EE; Lolkema JS
    J Bacteriol; 2015 Mar; 197(5):951-8. PubMed ID: 25535271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relative Rates of Amino Acid Import via the ABC Transporter GlnPQ Determine the Growth Performance of Lactococcus lactis.
    Fulyani F; Schuurman-Wolters GK; Slotboom DJ; Poolman B
    J Bacteriol; 2016 Feb; 198(3):477-85. PubMed ID: 26553850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth phase-dependent proteomes of the Malaysian isolated Lactococcus lactis dairy strain M4 using label-free qualitative shotgun proteomics analysis.
    Yap TW; Rabu A; Abu Bakar FD; Rahim RA; Mahadi NM; Illias RM; Murad AM
    ScientificWorldJournal; 2014; 2014():642891. PubMed ID: 24982972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced production of nisin by co-culture of Lactococcus lactis sub sp. lactis and Yarrowia lipolytica in molasses based medium.
    Ariana M; Hamedi J
    J Biotechnol; 2017 Aug; 256():21-26. PubMed ID: 28694185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peptide utilization by Lactococcus lactis and Leuconostoc mesenteroides.
    Foucaud C; Hemme D; Desmazeaud M
    Lett Appl Microbiol; 2001 Jan; 32(1):20-5. PubMed ID: 11169036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide transcriptional responses to carbon starvation in nongrowing Lactococcus lactis.
    Ercan O; Wels M; Smid EJ; Kleerebezem M
    Appl Environ Microbiol; 2015 Apr; 81(7):2554-61. PubMed ID: 25636846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering the central pathways in Lactococcus lactis: functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions.
    Papagianni M; Avramidis N
    Enzyme Microb Technol; 2012 Aug; 51(3):125-30. PubMed ID: 22759530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Features of dynamics of growth and formation of uncultivable forms in Lactococcus lactis].
    Pakhomov IuD; Blinkova LP; Dmitrieva OV; Stoianova LG
    Zh Mikrobiol Epidemiol Immunobiol; 2013; (3):92-6. PubMed ID: 24000601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemically defined media and auxotrophy of the prolific l-lactic acid producer Lactococcus lactis IO-1.
    Machii M; Watanabe S; Zendo T; Chibazakura T; Sonomoto K; Shimizu-Kadota M; Yoshikawa H
    J Biosci Bioeng; 2013 May; 115(5):481-4. PubMed ID: 23287501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiology of pyruvate metabolism in Lactococcus lactis.
    Cocaign-Bousquet M; Garrigues C; Loubiere P; Lindley ND
    Antonie Van Leeuwenhoek; 1996 Oct; 70(2-4):253-67. PubMed ID: 8879410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation.
    Flahaut NA; Wiersma A; van de Bunt B; Martens DE; Schaap PJ; Sijtsma L; Dos Santos VA; de Vos WM
    Appl Microbiol Biotechnol; 2013 Oct; 97(19):8729-39. PubMed ID: 23974365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amino acid accumulation limits the overexpression of proteins in Lactococcus lactis.
    Marreddy RK; Geertsma ER; Permentier HP; Pinto JP; Kok J; Poolman B
    PLoS One; 2010 Apr; 5(4):e10317. PubMed ID: 20436673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Higher nisin yield is reached with glutathione and pyruvate compared with heme in Lactococcus lactis N8.
    Girgin Ersoy Z; Kayıhan C; Tunca S
    Braz J Microbiol; 2020 Sep; 51(3):1247-1257. PubMed ID: 31898248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of glucose and nitrogen source concentration on batch fermentation kinetics of Lactococcus lactis under hemin-stimulated respirative condition.
    Razvi A; Zhang Z; Lan CQ
    Biotechnol Prog; 2008; 24(4):852-8. PubMed ID: 19194896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis.
    Tynkkynen S; Buist G; Kunji E; Kok J; Poolman B; Venema G; Haandrikman A
    J Bacteriol; 1993 Dec; 175(23):7523-32. PubMed ID: 8244921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Lcn972 bacteriocin-encoding plasmid pBL1 impairs cellobiose metabolism in Lactococcus lactis.
    Campelo AB; Gaspar P; Roces C; Rodríguez A; Kok J; Kuipers OP; Neves AR; Martínez B
    Appl Environ Microbiol; 2011 Nov; 77(21):7576-85. PubMed ID: 21890668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential expression of proteins and genes in the lag phase of Lactococcus lactis subsp. lactis grown in synthetic medium and reconstituted skim milk.
    Larsen N; Boye M; Siegumfeldt H; Jakobsen M
    Appl Environ Microbiol; 2006 Feb; 72(2):1173-9. PubMed ID: 16461664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.