BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

567 related articles for article (PubMed ID: 21349499)

  • 1. Carbohydrate-directed synthesis of silver and gold nanoparticles: effect of the structure of carbohydrates and reducing agents on the size and morphology of the composites.
    Shervani Z; Yamamoto Y
    Carbohydr Res; 2011 Apr; 346(5):651-8. PubMed ID: 21349499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(2):374-81. PubMed ID: 19324587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa.
    Castro-Longoria E; Vilchis-Nestor AR; Avalos-Borja M
    Colloids Surf B Biointerfaces; 2011 Mar; 83(1):42-8. PubMed ID: 21087843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates.
    Lukman AI; Gong B; Marjo CE; Roessner U; Harris AT
    J Colloid Interface Sci; 2011 Jan; 353(2):433-44. PubMed ID: 20974473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and activity of apoferritin-stabilized gold nanoparticles.
    Zhang L; Swift J; Butts CA; Yerubandi V; Dmochowski IJ
    J Inorg Biochem; 2007 Nov; 101(11-12):1719-29. PubMed ID: 17723241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silver and gold nanoparticles in plants: sites for the reduction to metal.
    Beattie IR; Haverkamp RG
    Metallomics; 2011 Jun; 3(6):628-32. PubMed ID: 21611658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starch-directed green synthesis, characterization and morphology of silver nanoparticles.
    Khan Z; Singh T; Hussain JI; Obaid AY; Al-Thabaiti SA; El-Mossalamy EH
    Colloids Surf B Biointerfaces; 2013 Feb; 102():578-84. PubMed ID: 23104028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei.
    Kalishwaralal K; Deepak V; Ram Kumar Pandian S; Kottaisamy M; BarathmaniKanth S; Kartikeyan B; Gurunathan S
    Colloids Surf B Biointerfaces; 2010 Jun; 77(2):257-62. PubMed ID: 20197229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of stable AuAg bimetallic nanoparticles encapsulated by diblock copolymer micelles.
    Menezes WG; Zielasek V; Dzhardimalieva GI; Pomogailo SI; Thiel K; Wöhrle D; Hartwig A; Bäumer M
    Nanoscale; 2012 Mar; 4(5):1658-64. PubMed ID: 22301765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver nanoparticles: green synthesis and their antimicrobial activities.
    Sharma VK; Yngard RA; Lin Y
    Adv Colloid Interface Sci; 2009 Jan; 145(1-2):83-96. PubMed ID: 18945421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology and antibacterial activity of carbohydrate-stabilized silver nanoparticles.
    Valodkar M; Bhadoria A; Pohnerkar J; Mohan M; Thakore S
    Carbohydr Res; 2010 Aug; 345(12):1767-73. PubMed ID: 20591419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids.
    Dubey SP; Lahtinen M; Särkkä H; Sillanpää M
    Colloids Surf B Biointerfaces; 2010 Oct; 80(1):26-33. PubMed ID: 20620889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green fluorescent protein for in situ synthesis of highly uniform Au nanoparticles and monitoring protein denaturation.
    Sanpui P; Pandey SB; Ghosh SS; Chattopadhyay A
    J Colloid Interface Sci; 2008 Oct; 326(1):129-37. PubMed ID: 18684469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel one-pot 'green' synthesis of stable silver nanoparticles using soluble starch.
    Vigneshwaran N; Nachane RP; Balasubramanya RH; Varadarajan PV
    Carbohydr Res; 2006 Sep; 341(12):2012-8. PubMed ID: 16716274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent.
    Kasthuri J; Veerapandian S; Rajendiran N
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):55-60. PubMed ID: 18977643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of 28-membered macrocyclic polyammonium cations functionalized gold nanoparticles and their potential for sensing nucleotides.
    Misra TK; Liu CY
    J Colloid Interface Sci; 2008 Oct; 326(2):411-9. PubMed ID: 18657823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperbranched polyglycidol assisted green synthetic protocols for the preparation of multifunctional metal nanoparticles.
    Li H; Jo JK; Zhang LD; Ha CS; Suh H; Kim I
    Langmuir; 2010 Dec; 26(23):18442-53. PubMed ID: 21047097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of morphology, reactivity and stability of synthesized silver nanoparticles using Bacillus subtilis and Catharanthus roseus (L.) G. Don.
    Kannan N; Mukunthan KS; Balaji S
    Colloids Surf B Biointerfaces; 2011 Sep; 86(2):378-83. PubMed ID: 21592749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface.
    Selvakannan PR; Swami A; Srisathiyanarayanan D; Shirude PS; Pasricha R; Mandale AB; Sastry M
    Langmuir; 2004 Aug; 20(18):7825-36. PubMed ID: 15323537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.