These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21349975)

  • 101. Structural basis for GTP-dependent dimerization of hydrogenase maturation factor HypB.
    Chan KH; Li T; Wong CO; Wong KB
    PLoS One; 2012; 7(1):e30547. PubMed ID: 22276211
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies.
    Greene BL; Joseph CA; Maroney MJ; Dyer RB
    J Am Chem Soc; 2012 Jul; 134(27):11108-11. PubMed ID: 22716776
    [TBL] [Abstract][Full Text] [Related]  

  • 103. The Complete Genome of a Novel Typical Species
    Petushkova E; Khasimov M; Mayorova E; Delegan Y; Frantsuzova E; Bogun A; Galkina E; Tsygankov A
    Microorganisms; 2024 Feb; 12(2):. PubMed ID: 38399794
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Hydrogen production by recombinant Escherichia coli strains.
    Maeda T; Sanchez-Torres V; Wood TK
    Microb Biotechnol; 2012 Mar; 5(2):214-25. PubMed ID: 21895995
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph.
    López-Pérez M; Gonzaga A; Martin-Cuadrado AB; Onyshchenko O; Ghavidel A; Ghai R; Rodriguez-Valera F
    Sci Rep; 2012; 2():696. PubMed ID: 23019517
    [TBL] [Abstract][Full Text] [Related]  

  • 106.
    Naughton KJ; Treviño RE; Moore PJ; Wertz AE; Dickson JA; Shafaat HS
    ACS Synth Biol; 2021 Aug; 10(8):2116-2120. PubMed ID: 34370434
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Enhanced copper-resistance gene repertoire in Alteromonas macleodii strains isolated from copper-treated marine coatings.
    Cusick K; Iturbide A; Gautam P; Price A; Polson S; MacDonald M; Erill I
    PLoS One; 2021; 16(9):e0257800. PubMed ID: 34582496
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Genomic diversity of "deep ecotype" Alteromonas macleodii isolates: evidence for Pan-Mediterranean clonal frames.
    López-Pérez M; Gonzaga A; Rodriguez-Valera F
    Genome Biol Evol; 2013; 5(6):1220-32. PubMed ID: 23729633
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Why Close a Bacterial Genome? The Plasmid of Alteromonas Macleodii HOT1A3 is a Vector for Inter-Specific Transfer of a Flexible Genomic Island.
    Fadeev E; De Pascale F; Vezzi A; Hübner S; Aharonovich D; Sher D
    Front Microbiol; 2016; 7():248. PubMed ID: 27014193
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Organophosphorus acid anhydrolase from Alteromonas macleodii: structural study and functional relationship to prolidases.
    Štěpánková A; Dušková J; Skálová T; Hašek J; Koval' T; Østergaard LH; Dohnálek J
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Apr; 69(Pt 4):346-54. PubMed ID: 23545636
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Draft Genome Sequence of Alteromonas macleodii Strain MIT1002, Isolated from an Enrichment Culture of the Marine Cyanobacterium Prochlorococcus.
    Biller SJ; Coe A; Martin-Cuadrado AB; Chisholm SW
    Genome Announc; 2015 Aug; 3(4):. PubMed ID: 26316635
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Identification of catalytically important residues of the carotenoid 1,2-hydratases from Rubrivivax gelatinosus and Thiocapsa roseopersicina.
    Hiseni A; Otten LG; Arends IWCE
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1275-1284. PubMed ID: 26481619
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Towards a Synthetic Biology Toolset for Metallocluster Enzymes in Biosynthetic Pathways: What We Know and What We Need.
    Shomar H; Bokinsky G
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834021
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Heterologous Hydrogenase Overproduction Systems for Biotechnology-An Overview.
    Fan Q; Neubauer P; Lenz O; Gimpel M
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824336
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Cyanobacterial hydrogenases and hydrogen metabolism revisited: recent progress and future prospects.
    Khanna N; Lindblad P
    Int J Mol Sci; 2015 May; 16(5):10537-61. PubMed ID: 26006225
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Designed surface residue substitutions in [NiFe] hydrogenase that improve electron transfer characteristics.
    Yonemoto IT; Smith HO; Weyman PD
    Int J Mol Sci; 2015 Jan; 16(1):2020-33. PubMed ID: 25603181
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Modeling three-dimensional structure of two closely related Ni-Fe hydrogenases.
    Abdullatypov AV; Tsygankov AA
    Photosynth Res; 2015 Aug; 125(1-2):341-53. PubMed ID: 25572109
    [TBL] [Abstract][Full Text] [Related]  

  • 118. A broad survey reveals substitution tolerance of residues ligating FeS clusters in [NiFe] hydrogenase.
    Yonemoto IT; Clarkson BR; Smith HO; Weyman PD
    BMC Biochem; 2014 Jun; 15():10. PubMed ID: 24934472
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Increasing the metabolic capacity of Escherichia coli for hydrogen production through heterologous expression of the Ralstonia eutropha SH operon.
    Ghosh D; Bisaillon A; Hallenbeck PC
    Biotechnol Biofuels; 2013 Aug; 6(1):122. PubMed ID: 23977944
    [TBL] [Abstract][Full Text] [Related]  

  • 120. An innovative cloning platform enables large-scale production and maturation of an oxygen-tolerant [NiFe]-hydrogenase from Cupriavidus necator in Escherichia coli.
    Schiffels J; Pinkenburg O; Schelden M; Aboulnaga el-HA; Baumann ME; Selmer T
    PLoS One; 2013; 8(7):e68812. PubMed ID: 23861944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.