BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 21350737)

  • 61. Rapid and ultra-sensitive detection of AMP using a fluorescent and magnetic nano-silica sandwich complex.
    Song Y; Zhao C; Ren J; Qu X
    Chem Commun (Camb); 2009 Apr; (15):1975-7. PubMed ID: 19333462
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An ultrasensitive fluorescent aptasensor for adenosine detection based on exonuclease III assisted signal amplification.
    Hu P; Zhu C; Jin L; Dong S
    Biosens Bioelectron; 2012 Apr; 34(1):83-7. PubMed ID: 22382074
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ultrasensitive electrochemical aptasensor for thrombin based on the amplification of aptamer-AuNPs-HRP conjugates.
    Zhao J; Zhang Y; Li H; Wen Y; Fan X; Lin F; Tan L; Yao S
    Biosens Bioelectron; 2011 Jan; 26(5):2297-303. PubMed ID: 21030239
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Silver nanocluster aptamers: in situ generation of intrinsically fluorescent recognition ligands for protein detection.
    Sharma J; Yeh HC; Yoo H; Werner JH; Martinez JS
    Chem Commun (Camb); 2011 Feb; 47(8):2294-6. PubMed ID: 21152540
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electrochemical analysis of two analytes based on a dual-functional aptamer DNA sequence.
    Li X; Liu J; Zhang S
    Chem Commun (Camb); 2010 Jan; 46(4):595-7. PubMed ID: 20062873
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Label-free aptasensor for adenosine deaminase sensing based on fluorescence turn-on.
    Zeng X; Wang C; Li YX; Li XX; Su YY; An J; Tang YL
    Analyst; 2015 Feb; 140(4):1192-7. PubMed ID: 25521724
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A signal amplification strategy using the cascade catalysis of gold nanoclusters and glucose dehydrogenase for ultrasensitive detection of thrombin.
    Han J; Zhuo Y; Chai Y; Gui G; Zhao M; Zhu Q; Yuan R
    Biosens Bioelectron; 2013 Dec; 50():161-6. PubMed ID: 23850783
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A feasibility study of a leaky waveguide aptasensor for thrombin.
    Alamrani NA; Greenway GM; Pamme N; Goddard NJ; Gupta R
    Analyst; 2019 Oct; 144(20):6048-6054. PubMed ID: 31524217
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hydrogel based aptasensor for thrombin sensing by Resonance Rayleigh Scattering.
    Pourreza N; Ghomi M
    Anal Chim Acta; 2019 Nov; 1079():180-191. PubMed ID: 31387709
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization.
    Yue Q; Shen T; Wang L; Xu S; Li H; Xue Q; Zhang Y; Gu X; Zhang S; Liu J
    Biosens Bioelectron; 2014 Jun; 56():231-6. PubMed ID: 24508546
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A simple and sensitive label-free fluorescent approach for protein detection based on a Perylene probe and aptamer.
    Lv Z; Liu J; Bai W; Yang S; Chen A
    Biosens Bioelectron; 2015 Feb; 64():530-4. PubMed ID: 25310484
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Proximity-dependent protein detection based on enzyme-assisted fluorescence signal amplification.
    Tan Y; Guo Q; Zhao X; Yang X; Wang K; Huang J; Zhou Y
    Biosens Bioelectron; 2014 Jan; 51():255-60. PubMed ID: 23973935
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bifunctional combined aptamer for simultaneous separation and detection of thrombin.
    Bing T; Liu X; Cheng X; Cao Z; Shangguan D
    Biosens Bioelectron; 2010 Feb; 25(6):1487-92. PubMed ID: 19959350
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A novel label-free electrochemical aptasensor for thrombin based on the {nano-Au/thionine}n multilayer films as redox probes.
    Yuan Y; Yuan R; Chai Y; Zhuo Y; Liu Z; Mao L; Guan S; Qian X
    Anal Chim Acta; 2010 Jun; 668(2):171-6. PubMed ID: 20493294
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A novel optical thrombin aptasensor based on magnetic nanoparticles and split DNAzyme.
    Zhu D; Luo J; Rao X; Zhang J; Cheng G; He P; Fang Y
    Anal Chim Acta; 2012 Jan; 711():91-6. PubMed ID: 22152801
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Exciton energy transfer-based fluorescent sensing through aptamer-programmed self-assembly of quantum dots.
    Liu J; Liu Y; Yang X; Wang K; Wang Q; Shi H; Li L
    Anal Chem; 2013 Nov; 85(22):11121-8. PubMed ID: 24111637
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nanomaterial-amplified "signal off/on" electrogenerated chemiluminescence aptasensors for the detection of thrombin.
    Li Y; Qi H; Gao Q; Yang J; Zhang C
    Biosens Bioelectron; 2010 Oct; 26(2):754-9. PubMed ID: 20650626
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Aptamer conjugated Mo(6)S(9-x)I(x) nanowires for direct and highly sensitive electrochemical sensing of thrombin.
    McMullan M; Sun N; Papakonstantinou P; Li M; Zhou W; Mihailovic D
    Biosens Bioelectron; 2011 Jan; 26(5):1853-9. PubMed ID: 20176468
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Label-free aptasensor for thrombin determination based on the nanostructured phenazine mediator.
    Evtugyn GA; Kostyleva VB; Porfireva AV; Savelieva MA; Evtugyn VG; Sitdikov RR; Stoikov II; Antipin IS; Hianik T
    Talanta; 2012 Dec; 102():156-63. PubMed ID: 23182588
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Application of 3,4,9,10-perylenetetracarboxylic diimide microfibers as a fluorescent sensing platform for biomolecular detection.
    Li H; Sun X
    Anal Chim Acta; 2011 Sep; 702(1):109-13. PubMed ID: 21819867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.