BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21350857)

  • 1. Sub-structures formed in the excited state are responsible for tryptophan residues fluorescence in β-lactoglobulin.
    Albani JR
    J Fluoresc; 2011 Jul; 21(4):1683-7. PubMed ID: 21350857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan 19 residue is the origin of bovine β-lactoglobulin fluorescence.
    Albani JR; Vogelaer J; Bretesche L; Kmiecik D
    J Pharm Biomed Anal; 2014 Mar; 91():144-50. PubMed ID: 24463042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation between proteins tertiary structure, tryptophan fluorescence lifetimes and tryptophan S(o)→(1)L(b) and S(o)→(1)L(a) transitions. Studies on α1-acid glycoprotein and β-lactoglobulin.
    Albani JR
    J Fluoresc; 2011 May; 21(3):1301-9. PubMed ID: 21318433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of fluorescence lifetimes in human serum albumin. Studies on native and denatured protein.
    Amiri M; Jankeje K; Albani JR
    J Fluoresc; 2010 May; 20(3):651-6. PubMed ID: 20195715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of 1-aminoanthracene (1-AMA) binding on the structure of three lipocalin proteins, the dimeric β lactoglobulin, the dimeric odorant binding protein and the monomeric α1-acid glycoprotein. Fluorescence spectra and lifetimes studies.
    Kmiecik D; Albani JR
    J Fluoresc; 2010 Sep; 20(5):973-83. PubMed ID: 20352304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of tryptophan fluorescence lifetimes part 1. Fluorescence lifetimes origin of tryptophan free in solution.
    Albani JR
    J Fluoresc; 2014 Jan; 24(1):93-104. PubMed ID: 23912963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of tryptophan fluorescence lifetimes. Part 2: fluorescence lifetimes origin of tryptophan in proteins.
    Albani JR
    J Fluoresc; 2014 Jan; 24(1):105-17. PubMed ID: 23907253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes of beta-lactoglobulin in sodium bis(2-ethylhexyl) sulfosuccinate reverse micelles. A fluorescence and CD study.
    Andrade SM; Carvalho TI; Viseu MI; Costa SM
    Eur J Biochem; 2004 Feb; 271(4):734-44. PubMed ID: 14764089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights in the interpretation of tryptophan fluorescence : origin of the fluorescence lifetime and characterization of a new fluorescence parameter in proteins: the emission to excitation ratio.
    Albani JR
    J Fluoresc; 2007 Jul; 17(4):406-17. PubMed ID: 17458686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. beta-Lactoglobulin binding properties during its folding changes studied by fluorescence spectroscopy.
    Dufour E; Genot C; Haertlé T
    Biochim Biophys Acta; 1994 Mar; 1205(1):105-12. PubMed ID: 8142474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guanidinium chloride and urea denaturations of beta-lactoglobulin A at pH 2.0 and 25 degrees C: the equilibrium intermediate contains non-native structures (helix, tryptophan and hydrophobic patches).
    Dar TA; Singh LR; Islam A; Anjum F; Moosavi-Movahedi AA; Ahmad F
    Biophys Chem; 2007 May; 127(3):140-8. PubMed ID: 17289254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tryptophan rotamer located in a polar environment probes pH-dependent conformational changes in bovine beta-lactoglobulin A.
    Harvey BJ; Bell E; Brancaleon L
    J Phys Chem B; 2007 Mar; 111(10):2610-20. PubMed ID: 17300189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strange kinetic phase in the extremely early folding process of beta-lactoglobulin.
    Kamatari YO; Nakamura HK; Kuwata K
    FEBS Lett; 2007 Sep; 581(23):4463-7. PubMed ID: 17761168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pH and salt environment on the association of beta-lactoglobulin revealed by intrinsic fluorescence studies.
    Renard D; Lefebvre J; Griffin MC; Griffin WG
    Int J Biol Macromol; 1998 Feb; 22(1):41-9. PubMed ID: 9513815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformation and stability of thiol-modified bovine beta-lactoglobulin.
    Sakai K; Sakurai K; Sakai M; Hoshino M; Goto Y
    Protein Sci; 2000 Sep; 9(9):1719-29. PubMed ID: 11045618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pH-dependent conformational transition of beta-lactoglobulin modulates the binding of protoporphyrin IX.
    Tian F; Johnson K; Lesar AE; Moseley H; Ferguson J; Samuel ID; Mazzini A; Brancaleon L
    Biochim Biophys Acta; 2006 Jan; 1760(1):38-46. PubMed ID: 16297563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal unfolding and refolding of beta-lactoglobulin. An intrinsic andextrinsic fluorescence study.
    Bhattacharjee C; Das KP
    Eur J Biochem; 2000 Jul; 267(13):3957-64. PubMed ID: 10866794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the excited-state lifetimes of the tryptophan residues in barnase, via multifrequency phase fluorometry of tryptophan mutants.
    Willaert K; Loewenthal R; Sancho J; Froeyen M; Fersht A; Engelborghs Y
    Biochemistry; 1992 Jan; 31(3):711-6. PubMed ID: 1731927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved fluorescence study of human recombinant interferon alpha 2. Association state of the protein, spatial proximity of the two tryptophan residues.
    Vincent M; Li De La Sierra IM; Berberan-Santos MN; Diaz A; Diaz M; Padron G; Gallay J
    Eur J Biochem; 1992 Dec; 210(3):953-61. PubMed ID: 1483478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence study of the three tryptophan residues of the pore-forming domain of colicin A using multifrequency phase fluorometry.
    Vos R; Engelborghs Y; Izard J; Baty D
    Biochemistry; 1995 Feb; 34(5):1734-43. PubMed ID: 7849033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.