These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21350862)

  • 1. Drosophila gustatory preference behaviors require the atypical soluble guanylyl cyclases.
    Vermehren-Schmaedick A; Scudder C; Timmermans W; Morton DB
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Jul; 197(7):717-27. PubMed ID: 21350862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral responses to hypoxia in Drosophila larvae are mediated by atypical soluble guanylyl cyclases.
    Vermehren-Schmaedick A; Ainsley JA; Johnson WA; Davies SA; Morton DB
    Genetics; 2010 Sep; 186(1):183-96. PubMed ID: 20592263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atypical soluble guanylyl cyclases in Drosophila can function as molecular oxygen sensors.
    Morton DB
    J Biol Chem; 2004 Dec; 279(49):50651-3. PubMed ID: 15485853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic transmission in neurons that express the Drosophila atypical soluble guanylyl cyclases, Gyc-89Da and Gyc-89Db, is necessary for the successful completion of larval and adult ecdysis.
    Morton DB; Stewart JA; Langlais KK; Clemens-Grisham RA; Vermehren A
    J Exp Biol; 2008 May; 211(Pt 10):1645-56. PubMed ID: 18456892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the properties of the five soluble guanylyl cyclase subunits in Drosophila melanogaster.
    Morton DB; Langlais KK; Stewart JA; Vermehren A
    J Insect Sci; 2005; 5():12. PubMed ID: 16341244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary characterization of two atypical soluble guanylyl cyclases in the central and peripheral nervous system of Drosophila melanogaster.
    Langlais KK; Stewart JA; Morton DB
    J Exp Biol; 2004 Jun; 207(Pt 13):2323-38. PubMed ID: 15159437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple gustatory receptors required for the caffeine response in Drosophila.
    Lee Y; Moon SJ; Montell C
    Proc Natl Acad Sci U S A; 2009 Mar; 106(11):4495-500. PubMed ID: 19246397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal stimulus coding by a gustatory sensory neuron in Drosophila larvae.
    van Giesen L; Hernandez-Nunez L; Delasoie-Baranek S; Colombo M; Renaud P; Bruggmann R; Benton R; Samuel ADT; Sprecher SG
    Nat Commun; 2016 Feb; 7():10687. PubMed ID: 26864722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen-sensitive guanylyl cyclases in insects and their potential roles in oxygen detection and in feeding behaviors.
    Vermehren A; Langlais KK; Morton DB
    J Insect Physiol; 2006 Apr; 52(4):340-8. PubMed ID: 16427074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral Analysis of Bitter Taste Perception in Drosophila Larvae.
    Kim H; Choi MS; Kang K; Kwon JY
    Chem Senses; 2016 Jan; 41(1):85-94. PubMed ID: 26512069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila.
    Hiroi M; Meunier N; Marion-Poll F; Tanimura T
    J Neurobiol; 2004 Dec; 61(3):333-42. PubMed ID: 15389687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A taste receptor required for the caffeine response in vivo.
    Moon SJ; Köttgen M; Jiao Y; Xu H; Montell C
    Curr Biol; 2006 Sep; 16(18):1812-7. PubMed ID: 16979558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-specific activation of a single gustatory receptor produces opposing behavioral responses in Drosophila.
    Joseph RM; Heberlein U
    Genetics; 2012 Oct; 192(2):521-32. PubMed ID: 22798487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The taste of ribonucleosides: Novel macronutrients essential for larval growth are sensed by Drosophila gustatory receptor proteins.
    Mishra D; Thorne N; Miyamoto C; Jagge C; Amrein H
    PLoS Biol; 2018 Aug; 16(8):e2005570. PubMed ID: 30086130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central relay of bitter taste to the protocerebrum by peptidergic interneurons in the Drosophila brain.
    Hückesfeld S; Peters M; Pankratz MJ
    Nat Commun; 2016 Sep; 7():12796. PubMed ID: 27619503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caffeine Taste Signaling in Drosophila Larvae.
    Apostolopoulou AA; Köhn S; Stehle B; Lutz M; Wüst A; Mazija L; Rist A; Galizia CG; Lüdke A; Thum AS
    Front Cell Neurosci; 2016; 10():193. PubMed ID: 27555807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opposing chemosensory functions of closely related gustatory receptors.
    Ahn JE; Amrein H
    Elife; 2023 Dec; 12():. PubMed ID: 38060294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-NaCl perception in Drosophila melanogaster.
    Alves G; Sallé J; Chaudy S; Dupas S; Manière G
    J Neurosci; 2014 Aug; 34(33):10884-91. PubMed ID: 25122890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gsalpha is involved in sugar perception in Drosophila melanogaster.
    Ueno K; Kohatsu S; Clay C; Forte M; Isono K; Kidokoro Y
    J Neurosci; 2006 Jun; 26(23):6143-52. PubMed ID: 16763022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Drosophila fussel gene is required for bitter gustatory neuron differentiation acting within an Rpd3 dependent chromatin modifying complex.
    Rass M; Oestreich S; Guetter S; Fischer S; Schneuwly S
    PLoS Genet; 2019 Feb; 15(2):e1007940. PubMed ID: 30730884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.