These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21350950)

  • 1. The binding of aluminum to mugineic acid and related compounds as studied by potentiometric titration.
    Yoshimura E; Kohdr H; Mori S; Hider RC
    Biometals; 2011 Aug; 24(4):723-7. PubMed ID: 21350950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CE of phytosiderophores and related metal species in plants.
    Xuan Y; Scheuermann EB; Meda AR; Jacob P; von Wirén N; Weber G
    Electrophoresis; 2007 Oct; 28(19):3507-19. PubMed ID: 17768721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation and identification of phytosiderophores and their metal complexes in plants by zwitterionic hydrophilic interaction liquid chromatography coupled to electrospray ionization mass spectrometry.
    Xuan Y; Scheuermann EB; Meda AR; Hayen H; von Wirén N; Weber G
    J Chromatogr A; 2006 Dec; 1136(1):73-81. PubMed ID: 17045280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of ascorbate-mediated iron release from ferric phytosiderophores in the presence of nicotianamine.
    Weber G; von Wirén N; Hayen H
    Biometals; 2008 Oct; 21(5):503-13. PubMed ID: 18322653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron(III).
    von Wirén N; Khodr H; Hider RC
    Plant Physiol; 2000 Nov; 124(3):1149-58. PubMed ID: 11080292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of phytosiderophores by anion-exchange chromatography with pulsed amperometric detection.
    Weber G; Neumann G; Haake C; Römheld V
    J Chromatogr A; 2001 Sep; 928(2):171-5. PubMed ID: 11587335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anion exchange liquid chromatography--inductively coupled plasma-mass spectrometry detection of the Co2+, Cu2+, Fe3+ and Ni2+ complexes of mugineic and deoxymugineic acid.
    Bakkaus E; Collins RN; Morel JL; Gouget B
    J Chromatogr A; 2006 Oct; 1129(2):208-15. PubMed ID: 16876808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a new attenuating compound: a potentiometric, spectrophotometric and NMR equilibrium study on Fe(III), Al(III) and a new tetradentate mixed bisphosphonate-hydroxypyridinonate ligand.
    Crisponi G; Nurchi VM; Pivetta T; Gałezowska J; Gumienna-Kontecka E; Bailly T; Burgada R; Kozłowski H
    J Inorg Biochem; 2008 Jul; 102(7):1486-94. PubMed ID: 18299150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speciation of aluminum(III) complexes with oxidized glutathione in acidic aqueous solutions.
    Yang XD; Zhang QQ; Chen RF; Shen RF
    Anal Sci; 2008 Aug; 24(8):1005-12. PubMed ID: 18689941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study on the structure activity relationship of a phytosiderophore, mugineic acid].
    Nishimaru T
    Yakugaku Zasshi; 2006 Jul; 126(7):473-9. PubMed ID: 16819268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexation of Al(III) with reduced glutathione in acidic aqueous solutions.
    Wang X; Li K; Yang XD; Wang LL; Shen RF
    J Inorg Biochem; 2009 May; 103(5):657-65. PubMed ID: 19264359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of 2-methyl-3-hydroxy-4-pyridinecarboxylic acid as a possible chelating agent for iron and aluminium.
    Dean A; Ferlin MG; Brun P; Castagliuolo I; Badocco D; Pastore P; Venzo A; Bombi GG; Di Marco VB
    Dalton Trans; 2008 Apr; (13):1689-97. PubMed ID: 18354766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tripodal amine catechol ligands: a fascinating class of chelators for aluminium(III).
    Baral M; Sahoo SK; Kanungo BK
    J Inorg Biochem; 2008 Aug; 102(8):1581-8. PubMed ID: 18472165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry.
    Rellán-Alvarez R; Abadía J; Alvarez-Fernández A
    Rapid Commun Mass Spectrom; 2008 May; 22(10):1553-62. PubMed ID: 18421700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical studies on the coordination chemistry of phytosiderophores with special reference to Fe-nicotianamine complexes in graminaceous plants.
    Gopika S; Augustine C
    J Mol Model; 2022 Feb; 28(3):71. PubMed ID: 35226207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A QM/MM study of the complexes formed by aluminum and iron with serum transferrin at neutral and acidic pH.
    Mujika JI; Lopez X; Rezabal E; Castillo R; Marti S; Moliner V; Ugalde JM
    J Inorg Biochem; 2011 Nov; 105(11):1446-56. PubMed ID: 22099154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Zn-nicotianamine and Fe-2'-Deoxymugineic acid in the phloem sap from rice plants (Oryza sativa L.).
    Nishiyama R; Kato M; Nagata S; Yanagisawa S; Yoneyama T
    Plant Cell Physiol; 2012 Feb; 53(2):381-90. PubMed ID: 22218421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals.
    Schaaf G; Ludewig U; Erenoglu BE; Mori S; Kitahara T; von Wirén N
    J Biol Chem; 2004 Mar; 279(10):9091-6. PubMed ID: 14699112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexation of metals by phytosiderophores revealed by CE-ESI-MS and CE-ICP-MS.
    Dell'mour M; Koellensperger G; Quirino JP; Haddad PR; Stanetty C; Oburger E; Puschenreiter M; Hann S
    Electrophoresis; 2010 Apr; 31(7):1201-1207. PubMed ID: 20209572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Bioinorganic Chemistry of Iron].
    Mino Y
    Yakugaku Zasshi; 2018; 138(3):373-387. PubMed ID: 29503431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.