These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 21351109)

  • 1. The finite-size effect on the transport properties in edge-modified graphene nanoribbon-based molecular devices.
    Ding Z; Jiang J; Xing H; Shu H; Huang Y; Chen X; Lu W
    J Comput Chem; 2011 Jun; 32(8):1753-9. PubMed ID: 21351109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport properties of graphene nanoribbon-based molecular devices.
    Ding Z; Jiang J; Xing H; Shu H; Dong R; Chen X; Lu W
    J Comput Chem; 2011 Mar; 32(4):737-41. PubMed ID: 20925088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization-induced switching effect in graphene nanoribbon edge-defect junction.
    Yin G; Liang YY; Jiang F; Chen H; Wang P; Note R; Mizuseki H; Kawazoe Y
    J Chem Phys; 2009 Dec; 131(23):234706. PubMed ID: 20025341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of graphene nanoribbon devices.
    Guo J
    Nanoscale; 2012 Sep; 4(18):5538-48. PubMed ID: 22875475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms.
    Zhang YH; Zhou KG; Xie KF; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2010 Feb; 21(6):065201. PubMed ID: 20057033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Band structures and transport properties of zigzag graphene nanoribbons with antidot arrays.
    Zhang YT; Li QM; Li YC; Zhang YY; Zhai F
    J Phys Condens Matter; 2010 Aug; 22(31):315304. PubMed ID: 21399360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport properties of armchair graphene nanoribbon junctions between graphene electrodes.
    Motta C; Sánchez-Portal D; Trioni MI
    Phys Chem Chem Phys; 2012 Aug; 14(30):10683-9. PubMed ID: 22743740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic transport between quantum Hall states and quantum anomalous Hall states in a graphene nanoribbon based heterojunction.
    Xu XR; Cheng SG
    J Phys Condens Matter; 2013 Feb; 25(7):075304. PubMed ID: 23343589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum transport through a graphene nanoribbon-superconductor junction.
    Sun QF; Xie XC
    J Phys Condens Matter; 2009 Aug; 21(34):344204. PubMed ID: 21715779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin filtering and magneto-resistive effect at the graphene/h-BN ribbon interface.
    Dubois SM; Declerck X; Charlier JC; Payne MC
    ACS Nano; 2013 May; 7(5):4578-85. PubMed ID: 23641732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite size effects on the gate leakage current in graphene nanoribbon field-effect transistors.
    Mao LF
    Nanotechnology; 2009 Jul; 20(27):275203. PubMed ID: 19528675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edge Doping Engineering of High-Performance Graphene Nanoribbon Molecular Spintronic Devices.
    Wan H; Xiao X; Ang YS
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Edge-Functionalized Graphene Nanoribbon Chemical Sensor: Comparison with Carbon Nanotube and Graphene.
    Cho KM; Cho SY; Chong S; Koh HJ; Kim DW; Kim J; Jung HT
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42905-42914. PubMed ID: 30421906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The computational design of junctions between carbon nanotubes and graphene nanoribbons.
    Li YF; Li BR; Zhang HL
    Nanotechnology; 2009 Jun; 20(22):225202. PubMed ID: 19433869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of molybdenum disulfide nanoribbon on quantum transport of graphene.
    Gao G; Li Z; Chen M; Xie Y; Wang Y
    J Phys Condens Matter; 2017 Nov; 29(43):435001. PubMed ID: 28829340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exceptionally large second-order nonlinear optical response in donor-graphene nanoribbon-acceptor systems.
    Zhou ZJ; Li XP; Ma F; Liu ZB; Li ZR; Huang XR; Sun CC
    Chemistry; 2011 Feb; 17(8):2414-9. PubMed ID: 21319235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly tunable spin-dependent electron transport through carbon atomic chains connecting two zigzag graphene nanoribbons.
    Xu Y; Wang BJ; Ke SH; Yang W; Alzahrani AZ
    J Chem Phys; 2012 Sep; 137(10):104107. PubMed ID: 22979850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin-transport selectivity upon Co adsorption on antiferromagnetic graphene nanoribbons.
    Cocchi C; Prezzi D; Calzolari A; Molinari E
    J Chem Phys; 2010 Sep; 133(12):124703. PubMed ID: 20886961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and In Situ Transmission Electron Microscope Characterization of Free-Standing Graphene Nanoribbon Devices.
    Wang Q; Kitaura R; Suzuki S; Miyauchi Y; Matsuda K; Yamamoto Y; Arai S; Shinohara H
    ACS Nano; 2016 Jan; 10(1):1475-80. PubMed ID: 26731015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.