BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21351339)

  • 1. Chemical dissection of protein translocation through the anthrax toxin pore.
    Pentelute BL; Sharma O; Collier RJ
    Angew Chem Int Ed Engl; 2011 Mar; 50(10):2294-6. PubMed ID: 21351339
    [No Abstract]   [Full Text] [Related]  

  • 2. Disulfide bonds in the ectodomain of anthrax toxin receptor 2 are required for the receptor-bound protective-antigen pore to function.
    Sun J; Collier RJ
    PLoS One; 2010 May; 5(5):e10553. PubMed ID: 20479891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of 2-fluorohistidine labeling of the anthrax protective antigen on stability, pore formation, and translocation.
    Wimalasena DS; Cramer JC; Janowiak BE; Juris SJ; Melnyk RA; Anderson DE; Kirk KL; Collier RJ; Bann JG
    Biochemistry; 2007 Dec; 46(51):14928-36. PubMed ID: 18044973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of N-terminal amino acids in the potency of anthrax lethal factor.
    Gupta PK; Moayeri M; Crown D; Fattah RJ; Leppla SH
    PLoS One; 2008 Sep; 3(9):e3130. PubMed ID: 18769623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenylalanine-427 of anthrax protective antigen functions in both pore formation and protein translocation.
    Sun J; Lang AE; Aktories K; Collier RJ
    Proc Natl Acad Sci U S A; 2008 Mar; 105(11):4346-51. PubMed ID: 18334631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A semisynthesis platform for investigating structure-function relationships in the N-terminal domain of the anthrax Lethal Factor.
    Pentelute BL; Barker AP; Janowiak BE; Kent SB; Collier RJ
    ACS Chem Biol; 2010 Apr; 5(4):359-64. PubMed ID: 20180595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anthrax toxin uptake by primary immune cells as determined with a lethal factor-beta-lactamase fusion protein.
    Hu H; Leppla SH
    PLoS One; 2009 Nov; 4(11):e7946. PubMed ID: 19956758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that histidine protonation of receptor-bound anthrax protective antigen is a trigger for pore formation.
    Wimalasena DS; Janowiak BE; Lovell S; Miyagi M; Sun J; Zhou H; Hajduch J; Pooput C; Kirk KL; Battaile KP; Bann JG
    Biochemistry; 2010 Aug; 49(33):6973-83. PubMed ID: 20672855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polylysine-mediated translocation of the diphtheria toxin catalytic domain through the anthrax protective antigen pore.
    Sharma O; Collier RJ
    Biochemistry; 2014 Nov; 53(44):6934-40. PubMed ID: 25317832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changing the receptor specificity of anthrax toxin.
    Mechaly A; McCluskey AJ; Collier RJ
    mBio; 2012; 3(3):. PubMed ID: 22550037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the interaction between anthrax toxin and its cellular receptors.
    Liu S; Leung HJ; Leppla SH
    Cell Microbiol; 2007 Apr; 9(4):977-87. PubMed ID: 17381430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of membrane translocation by anthrax protective antigen.
    Wesche J; Elliott JL; Falnes PO; Olsnes S; Collier RJ
    Biochemistry; 1998 Nov; 37(45):15737-46. PubMed ID: 9843379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that translocation of anthrax toxin's lethal factor is initiated by entry of its N terminus into the protective antigen channel.
    Zhang S; Finkelstein A; Collier RJ
    Proc Natl Acad Sci U S A; 2004 Nov; 101(48):16756-61. PubMed ID: 15548616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Disulfide Bond Cys255-Cys279 in the Immunoglobulin-Like Domain of Anthrax Toxin Receptor 2 Is Required for Membrane Insertion of Anthrax Protective Antigen Pore.
    Jacquez P; Avila G; Boone K; Altiyev A; Puschhof J; Sauter R; Arigi E; Ruiz B; Peng X; Almeida I; Sherman M; Xiao C; Sun J
    PLoS One; 2015; 10(6):e0130832. PubMed ID: 26107617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A loop network within the anthrax toxin pore positions the phenylalanine clamp in an active conformation.
    Melnyk RA; Collier RJ
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):9802-7. PubMed ID: 16785422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approach to characterizing single-subunit mutations in multimeric prepores and pores of anthrax protective antigen.
    Janowiak BE; Finkelstein A; Collier RJ
    Protein Sci; 2009 Feb; 18(2):348-58. PubMed ID: 19165720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective antigen-binding domain of anthrax lethal factor mediates translocation of a heterologous protein fused to its amino- or carboxy-terminus.
    Milne JC; Blanke SR; Hanna PC; Collier RJ
    Mol Microbiol; 1995 Feb; 15(4):661-6. PubMed ID: 7783638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Impact of Protonation on Early Translocation of Anthrax Lethal Factor: Kinetics from Molecular Dynamics Simulations and Milestoning Theory.
    Ma P; Cardenas AE; Chaudhari MI; Elber R; Rempe SB
    J Am Chem Soc; 2017 Oct; 139(42):14837-14840. PubMed ID: 29019235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of spontaneous deamidation on the cytotoxic activity of the Bacillus anthracis protective antigen.
    Zomber G; Reuveny S; Garti N; Shafferman A; Elhanany E
    J Biol Chem; 2005 Dec; 280(48):39897-906. PubMed ID: 16188881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The anthrax toxin channel: a barrel of LFs.
    Blaustein RO
    J Gen Physiol; 2011 Apr; 137(4):337-41. PubMed ID: 21402885
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.