These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 21351577)
1. [Preparation of cationic dextran microspheres loaded with tetanus toxoid and study on the mechanism of protein loading]. Zheng CL; Liu XQ; Zhu JB; Zhao YN Yao Xue Xue Bao; 2010 Sep; 45(9):1183-7. PubMed ID: 21351577 [TBL] [Abstract][Full Text] [Related]
2. Preparation of cationic biodegradable dextran microspheres loaded with BSA and study on the mechanism of protein loading. Zheng C; Liu X; Zhu J; Zhao Y Drug Dev Ind Pharm; 2012 Jun; 38(6):653-8. PubMed ID: 22468612 [TBL] [Abstract][Full Text] [Related]
3. Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching. Van Tomme SR; De Geest BG; Braeckmans K; De Smedt SC; Siepmann F; Siepmann J; van Nostrum CF; Hennink WE J Control Release; 2005 Dec; 110(1):67-78. PubMed ID: 16253375 [TBL] [Abstract][Full Text] [Related]
4. Anionic and cationic dextran hydrogels for post-loading and release of proteins. Schillemans JP; Verheyen E; Barendregt A; Hennink WE; Van Nostrum CF J Control Release; 2011 Mar; 150(3):266-71. PubMed ID: 21130815 [TBL] [Abstract][Full Text] [Related]
5. Influence of degree of substitution of HES-HEMA on the release of incorporated drug models from corresponding hydrogels. Schwoerer AD; Harling S; Scheibe K; Menzel H; Daniels R Eur J Pharm Biopharm; 2009 Nov; 73(3):351-6. PubMed ID: 19683570 [TBL] [Abstract][Full Text] [Related]
6. Effect of particle size and charge on the network properties of microsphere-based hydrogels. Van Tomme SR; van Nostrum CF; Dijkstra M; De Smedt SC; Hennink WE Eur J Pharm Biopharm; 2008 Oct; 70(2):522-30. PubMed ID: 18582574 [TBL] [Abstract][Full Text] [Related]
7. The effect of network charge on the immobilization and release of proteins from chemically crosslinked dextran hydrogels. Schillemans JP; Hennink WE; van Nostrum CF Eur J Pharm Biopharm; 2010 Nov; 76(3):329-35. PubMed ID: 20708077 [TBL] [Abstract][Full Text] [Related]
8. A long acting biodegradable controlled delivery of chitosan microspheres loaded with tetanus toxoide as model antigen. Varma S; Sadasivan C Biomed Pharmacother; 2014 Mar; 68(2):225-30. PubMed ID: 24051124 [TBL] [Abstract][Full Text] [Related]
9. Immunoadjuvant potential of cross-linked dextran microspheres mixed with chitosan nanospheres encapsulated with tetanus toxoid. Pirouzmand H; Khameneh B; Tafaghodi M Pharm Biol; 2017 Dec; 55(1):212-217. PubMed ID: 27927058 [TBL] [Abstract][Full Text] [Related]
10. Controlled release of a model protein from enzymatically degrading dextran microspheres. Franssen O; Stenekes RJ; Hennink WE J Control Release; 1999 May; 59(2):219-28. PubMed ID: 10332056 [TBL] [Abstract][Full Text] [Related]
11. Effect of polymerization conditions on the network properties of dex-HEMA microspheres and macro-hydrogels. Chung JT; Vlugt-Wensink KD; Hennink WE; Zhang Z Int J Pharm; 2005 Jan; 288(1):51-61. PubMed ID: 15607257 [TBL] [Abstract][Full Text] [Related]
12. Hydroxyethyl starch-based polymers for the controlled release of biomacromolecules from hydrogel microspheres. Wöhl-Bruhn S; Bertz A; Harling S; Menzel H; Bunjes H Eur J Pharm Biopharm; 2012 Aug; 81(3):573-81. PubMed ID: 22579731 [TBL] [Abstract][Full Text] [Related]
13. Encapsulation and/or release behavior of bovine serum albumin within and from polylactide-grafted dextran microspheres. Ouchi T; Saito T; Kontani T; Ohya Y Macromol Biosci; 2004 Apr; 4(4):458-63. PubMed ID: 15468238 [TBL] [Abstract][Full Text] [Related]
14. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Mao S; Xu J; Cai C; Germershaus O; Schaper A; Kissel T Int J Pharm; 2007 Apr; 334(1-2):137-48. PubMed ID: 17196348 [TBL] [Abstract][Full Text] [Related]
15. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921 [TBL] [Abstract][Full Text] [Related]
16. Degradable dextran hydrogels: controlled release of a model protein from cylinders and microspheres. Franssen O; Vandervennet L; Roders P; Hennink WE J Control Release; 1999 Aug; 60(2-3):211-21. PubMed ID: 10425327 [TBL] [Abstract][Full Text] [Related]
17. Dextran microspheres could enhance immune responses against PLGA nanospheres encapsulated with tetanus toxoid and Quillaja saponins after nasal immunization in rabbit. Mohaghegh M; Tafaghodi M Pharm Dev Technol; 2011 Feb; 16(1):36-43. PubMed ID: 20082579 [TBL] [Abstract][Full Text] [Related]
18. Albumin release from biodegradable hydrogels composed of dextran and poly(ethylene glycol) macromer. Kim IS; Jeong YI; Kim DH; Lee YH; Kim SH Arch Pharm Res; 2001 Feb; 24(1):69-73. PubMed ID: 11235815 [TBL] [Abstract][Full Text] [Related]
19. Influences of excipients on in vitro release and in vivo performance of tetanus toxoid loaded polymer particles. Katare YK; Panda AK Eur J Pharm Sci; 2006 Jun; 28(3):179-88. PubMed ID: 16517132 [TBL] [Abstract][Full Text] [Related]
20. Biodegradable dextran-polylactide hydrogel network and its controlled release of albumin. Zhang Y; Chu CC J Biomed Mater Res; 2001 Jan; 54(1):1-11. PubMed ID: 11077397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]