BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21353232)

  • 1. Continuous-flow production of polymeric micelles in microreactors: experimental and computational analysis.
    Capretto L; Carugo D; Cheng W; Hill M; Zhang X
    J Colloid Interface Sci; 2011 May; 357(1):243-51. PubMed ID: 21353232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of polymeric micelles by microfluidic technology for combined drug delivery: application to osteogenic differentiation of human periodontal ligament mesenchymal stem cells (hPDLSCs).
    Capretto L; Mazzitelli S; Colombo G; Piva R; Penolazzi L; Vecchiatini R; Zhang X; Nastruzzi C
    Int J Pharm; 2013 Jan; 440(2):195-206. PubMed ID: 22884778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled self-assembly of quantum dot-block copolymer colloids in multiphase microfluidic reactors.
    Wang CW; Oskooei A; Sinton D; Moffitt MG
    Langmuir; 2010 Jan; 26(2):716-23. PubMed ID: 19874006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.
    Capretto L; Carugo D; Mazzitelli S; Nastruzzi C; Zhang X
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1496-532. PubMed ID: 23933616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic platform for integrated synthesis and dynamic light scattering measurement of block copolymer micelles.
    Chastek TQ; Iida K; Amis EJ; Fasolka MJ; Beers KL
    Lab Chip; 2008 Jun; 8(6):950-7. PubMed ID: 18497917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs.
    Sezgin Z; Yüksel N; Baykara T
    Eur J Pharm Biopharm; 2006 Nov; 64(3):261-8. PubMed ID: 16884896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of co-nanoprecipitation of organic actives and block copolymers in a microfluidic environment.
    Capretto L; Cheng W; Carugo D; Katsamenis OL; Hill M; Zhang X
    Nanotechnology; 2012 Sep; 23(37):375602. PubMed ID: 22922560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrohydrodynamic atomization for biodegradable polymeric particle production.
    Xie J; Lim LK; Phua Y; Hua J; Wang CH
    J Colloid Interface Sci; 2006 Oct; 302(1):103-12. PubMed ID: 16842810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in polymeric micelles for drug delivery and tumor targeting.
    Kedar U; Phutane P; Shidhaye S; Kadam V
    Nanomedicine; 2010 Dec; 6(6):714-29. PubMed ID: 20542144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced in vivo antitumor efficacy of fenretinide encapsulated in polymeric micelles.
    Okuda T; Kawakami S; Higuchi Y; Satoh T; Oka Y; Yokoyama M; Yamashita F; Hashida M
    Int J Pharm; 2009 May; 373(1-2):100-6. PubMed ID: 19429294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable Synthesis of Polymeric Micelles by Microfluidic Platforms for Biomedical Applications: A Systematic Review.
    Ahmadi M; Siavashy S; Ayyoubzadeh SM; Kecili R; Ghorbani-Bidkorbeh F
    Iran J Pharm Res; 2021; 20(2):229-240. PubMed ID: 34567158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of monodisperse block copolymer vesicles via flow focusing in microfluidics.
    Thiele J; Steinhauser D; Pfohl T; Förster S
    Langmuir; 2010 May; 26(9):6860-3. PubMed ID: 20121049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of continuous flow nanosphere formation by controlled microfluidic transport.
    Laulicht B; Cheifetz P; Mathiowitz E; Tripathi A
    Langmuir; 2008 Sep; 24(17):9717-26. PubMed ID: 18681411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic platform for controlled synthesis of polymeric nanoparticles.
    Karnik R; Gu F; Basto P; Cannizzaro C; Dean L; Kyei-Manu W; Langer R; Farokhzad OC
    Nano Lett; 2008 Sep; 8(9):2906-12. PubMed ID: 18656990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphiphilic comb-like polymers based on poly(oxyethylene)s as drug-delivery carriers.
    Kim KH; Lee JC; Lee J
    Macromol Biosci; 2008 Apr; 8(4):339-46. PubMed ID: 18098266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors.
    Ali HS; York P; Blagden N
    Int J Pharm; 2009 Jun; 375(1-2):107-13. PubMed ID: 19481696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imperfect dissolution in nonionic block copolymer and surfactant mixtures.
    Shimoni K; Danino D
    Langmuir; 2009 Mar; 25(5):2736-42. PubMed ID: 19437694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy.
    Wu XL; Kim JH; Koo H; Bae SM; Shin H; Kim MS; Lee BH; Park RW; Kim IS; Choi K; Kwon IC; Kim K; Lee DS
    Bioconjug Chem; 2010 Feb; 21(2):208-13. PubMed ID: 20073455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumoral acidic pH-responsive MPEG-poly(beta-amino ester) polymeric micelles for cancer targeting therapy.
    Min KH; Kim JH; Bae SM; Shin H; Kim MS; Park S; Lee H; Park RW; Kim IS; Kim K; Kwon IC; Jeong SY; Lee DS
    J Control Release; 2010 Jun; 144(2):259-66. PubMed ID: 20188131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic reactors for controlled synthesis of polymeric micelles.
    Capretto L; Chengx W; Carugo D; Hill M; Zhang X
    J Control Release; 2010 Nov; 148(1):e25-6. PubMed ID: 21529603
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.