These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 21353289)
21. Loss rates of urban biocides can exceed those of agricultural pesticides. Wittmer IK; Scheidegger R; Bader HP; Singer H; Stamm C Sci Total Environ; 2011 Feb; 409(5):920-32. PubMed ID: 21183204 [TBL] [Abstract][Full Text] [Related]
22. Pesticides in surface water runoff in south-eastern New York State, USA: seasonal and stormflow effects on concentrations. Phillips PJ; Bode RW Pest Manag Sci; 2004 Jun; 60(6):531-43. PubMed ID: 15198325 [TBL] [Abstract][Full Text] [Related]
23. High pollutant removal efficacy of a large constructed wetland leads to receiving stream improvements. Mallin MA; McAuliffe JA; McIver MR; Mayes D; Hanson MA J Environ Qual; 2012; 41(6):2046-55. PubMed ID: 23128761 [TBL] [Abstract][Full Text] [Related]
24. Research advances in using constructed wetlands to remove pesticides in agricultural runoff. Zhang XL; Yu ZD; Wang S; Li Y; Kong FL Ying Yong Sheng Tai Xue Bao; 2019 Mar; 30(3):1025-1034. PubMed ID: 30912396 [TBL] [Abstract][Full Text] [Related]
25. Pesticide removal from container nursery runoff in constructed wetland cells. Stearman GK; George DB; Carlson K; Lansford S J Environ Qual; 2003; 32(4):1548-56. PubMed ID: 12931912 [TBL] [Abstract][Full Text] [Related]
26. Efficient dissipation of acetamiprid, metalaxyl, S-metolachlor and terbuthylazine in a full-scale free water surface constructed wetland in Bologna province, Italy: A kinetic modeling study. Buscaroli E; Lavrnić S; Blasioli S; Gentile SL; Solimando D; Mancuso G; Anconelli S; Braschi I; Toscano A Environ Res; 2024 Apr; 247():118275. PubMed ID: 38246295 [TBL] [Abstract][Full Text] [Related]
27. Pesticide fate in tropical wetlands of Brazil: an aquatic microcosm study under semi-field conditions. Laabs V; Wehrhan A; Pinto A; Dores E; Amelung W Chemosphere; 2007 Mar; 67(5):975-89. PubMed ID: 17166548 [TBL] [Abstract][Full Text] [Related]
28. Pesticide runoff model (PeRM): a case study for the Kintore Creek Watershed, Ontario, Canada. Li YR; Li YF; Struger J; Chen B; Huang GH J Environ Sci Health B; 2003 May; 38(3):257-73. PubMed ID: 12716044 [TBL] [Abstract][Full Text] [Related]
29. Pesticide contamination interception strategy and removal efficiency in forest buffer and artificial wetland in a tile-drained agricultural watershed. Passeport E; Tournebize J; Chaumont C; Guenne A; Coquet Y Chemosphere; 2013 May; 91(9):1289-96. PubMed ID: 23535469 [TBL] [Abstract][Full Text] [Related]
30. A pesticide runoff model for simulating runoff losses of pesticides from agricultural lands. Li YR; Huang GH; Li YF; Struger J; Fischer JD Water Sci Technol; 2003; 47(1):33-40. PubMed ID: 12578171 [TBL] [Abstract][Full Text] [Related]
31. Characterizing dependence of pesticide load in surface water on precipitation and pesticide use for the Sacramento River watershed. Guo L; Nordmark CE; Spurlock FC; Johnson BR; Li L; Lee JM; Goh KS Environ Sci Technol; 2004 Jul; 38(14):3842-52. PubMed ID: 15298191 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of atrazine removal processes in a wetland. Kao CM; Wang JY; Wu MJ Water Sci Technol; 2001; 44(11-12):539-44. PubMed ID: 11804146 [TBL] [Abstract][Full Text] [Related]
33. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California. Luo Y; Zhang X; Liu X; Ficklin D; Zhang M Environ Pollut; 2008 Dec; 156(3):1171-81. PubMed ID: 18457909 [TBL] [Abstract][Full Text] [Related]
34. Pesticides in the Rhône river delta (France): basic data for a field-based exposure assessment. Comoretto L; Arfib B; Chiron S Sci Total Environ; 2007 Jul; 380(1-3):124-32. PubMed ID: 17324449 [TBL] [Abstract][Full Text] [Related]
35. Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters. Wittmer IK; Bader HP; Scheidegger R; Singer H; Lück A; Hanke I; Carlsson C; Stamm C Water Res; 2010 May; 44(9):2850-62. PubMed ID: 20188390 [TBL] [Abstract][Full Text] [Related]
36. Distribution of organophosphorus pesticides in the bed sediments of a backwater system located in an agricultural watershed: influence of seasonal intrusion of seawater. Babu V; Unnikrishnan P; Anu G; Nair SM Arch Environ Contam Toxicol; 2011 May; 60(4):597-609. PubMed ID: 20628738 [TBL] [Abstract][Full Text] [Related]
37. Designing a constructed wetland for the detention of agricultural runoff for water quality improvement. Millhollon EP; Rodrigue PB; Rabb JL; Martin DF; Anderson RA; Dans DR J Environ Qual; 2009; 38(6):2458-67. PubMed ID: 19875802 [TBL] [Abstract][Full Text] [Related]
38. Evaluating acute toxicity of methyl parathion application in constructed wetland mesocosms. Milam CD; Bouldin JL; Farris JL; Schulz R; Moore MT; Bennett ER; Cooper CM; Smith S Environ Toxicol; 2004 Oct; 19(5):471-9. PubMed ID: 15352263 [TBL] [Abstract][Full Text] [Related]
39. Runoff characteristics of particulate pesticides in a river from paddy fields. Inoue T; Ebise S; Numabe A; Nagafuchi O; Matsui Y Water Sci Technol; 2002; 45(9):121-6. PubMed ID: 12079093 [TBL] [Abstract][Full Text] [Related]
40. The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Konstantinou IK; Hela DG; Albanis TA Environ Pollut; 2006 Jun; 141(3):555-70. PubMed ID: 16226830 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]