These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21353636)

  • 1. Production of biomass and extracellular 5-aminolevulinic acid by Rhodopseudomonas palustris KG31 under light and dark conditions using volatile fatty acid.
    Choorit W; Saikeur A; Chodok P; Prasertsan P; Kantachote D
    J Biosci Bioeng; 2011 Jun; 111(6):658-64. PubMed ID: 21353636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of precursors and inhibitor on the production of extracellular 5-aminolevulinic acid and biomass by Rhodopseudomonas palustris KG31.
    Saikeur A; Choorit W; Prasertsan P; Kantachote D; Sasaki K
    Biosci Biotechnol Biochem; 2009 May; 73(5):987-92. PubMed ID: 19420716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular 5-aminolevulinic acid production by Escherichia coli containing the Rhodopseudomonas palustris KUGB306 hemA gene.
    Choi HP; Lee YM; Yun CW; Sung HC
    J Microbiol Biotechnol; 2008 Jun; 18(6):1136-40. PubMed ID: 18600059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Production of 5-aminolevulinic acid from organic industrial wastewater by photosynthetic bacteria].
    Xiuyan L; Xiangyang X; Min Y; Shuo X
    Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1221-6. PubMed ID: 19062648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth characteristics of Rhodopseudomonas palustris cultured outdoors, in an underwater tubular photobioreactor, and investigation on photosynthetic efficiency.
    Carlozzi P; Pushparaj B; Degl'Innocenti A; Capperucci A
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):789-95. PubMed ID: 16944131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological formation of 5-aminolevulinic acid by photosynthetic bacteria.
    Liu XY; Xu XY; Ma QL; Wu WH
    J Environ Sci (China); 2005; 17(1):152-5. PubMed ID: 15900779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phototropic H2 production by a newly isolated strain of Rhodopseudomonas palustris.
    Suwansaard M; Choorit W; Zeilstra-Ryalls JH; Prasertsan P
    Biotechnol Lett; 2010 Nov; 32(11):1667-71. PubMed ID: 20623317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic study of pH effects on biological hydrogen production by a mixed culture.
    Jun YS; Yu SH; Ryu KG; Lee TJ
    J Microbiol Biotechnol; 2008 Jun; 18(6):1130-5. PubMed ID: 18600058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of metal ions on biomass and 5-aminolevulinic acid production in Rhodopseudomonas palustris wastewater treatment.
    Liu S; Zhang G; Li J; Li X; Zhang J
    Water Sci Technol; 2016; 73(2):382-8. PubMed ID: 26819394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Thiosulfate metabolism in Rhodopseudomonas palustris].
    Rodova NA; Pedan LV
    Mikrobiologiia; 1980; 49(2):221-6. PubMed ID: 6771496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High level production of 5-aminolevulinic acid by Propionibacterium acidipropionici grown in a low-cost medium.
    Sonhom R; Thepsithar C; Jongsareejit B
    Biotechnol Lett; 2012 Sep; 34(9):1667-72. PubMed ID: 22576280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Succinic acid production from continuous fermentation process using Mannheimia succiniciproducens LPK7.
    Oh IJ; Lee HW; Park CH; Lee SY; Lee J
    J Microbiol Biotechnol; 2008 May; 18(5):908-12. PubMed ID: 18633290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced bio-hydrogen production by the combination of dark- and photo-fermentation in batch culture.
    Liu BF; Ren NQ; Xie GJ; Ding J; Guo WQ; Xing DF
    Bioresour Technol; 2010 Jul; 101(14):5325-9. PubMed ID: 20202826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of 5-aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system.
    Fu W; Lin J; Cen P
    Bioresour Technol; 2008 Jul; 99(11):4864-70. PubMed ID: 17993272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen production by photoreactive nanoporous latex coatings of nongrowing Rhodopseudomonas palustris CGA009.
    Gosse JL; Engel BJ; Rey FE; Harwood CS; Scriven LE; Flickinger MC
    Biotechnol Prog; 2007; 23(1):124-30. PubMed ID: 17269679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning of two 5-aminolevulinic acid synthase isozymes HemA and HemO from Rhodopseudomonas palustris with favorable characteristics for 5-aminolevulinic acid production.
    Zhang L; Chen J; Chen N; Sun J; Zheng P; Ma Y
    Biotechnol Lett; 2013 May; 35(5):763-8. PubMed ID: 23338702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological hydrogen production by the algal biomass Chlorella vulgaris MSU 01 strain isolated from pond sediment.
    Bala Amutha K; Murugesan AG
    Bioresour Technol; 2011 Jan; 102(1):194-9. PubMed ID: 20620045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.