These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21353636)

  • 21. Production of bio-fuels (hydrogen and lipids) through a photofermentation process.
    Carlozzi P; Buccioni A; Minieri S; Pushparaj B; Piccardi R; Ena A; Pintucci C
    Bioresour Technol; 2010 May; 101(9):3115-20. PubMed ID: 20060291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions.
    Lin H; Bennett GN; San KY
    Biotechnol Bioeng; 2005 Jun; 90(6):775-9. PubMed ID: 15803467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions.
    Chen X; Zhang DJ; Qi WT; Gao SJ; Xiu ZL; Xu P
    Appl Microbiol Biotechnol; 2003 Dec; 63(2):143-6. PubMed ID: 12908084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting VFA formation by dark fermentation of particulate substrates.
    Arudchelvam Y; Perinpanayagam M; Nirmalakhandan N
    Bioresour Technol; 2010 Oct; 101(19):7492-9. PubMed ID: 20472426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aerobic and anaerobic ethanol production by Mucor circinelloides during submerged growth.
    Lübbehüsen TL; Nielsen J; McIntyre M
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):543-8. PubMed ID: 12879305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of wood vinegar to enhance 5-aminolevulinic acid production by selected
    Nunkaew T; Kantachote D; Chaiprapat S; Nitoda T; Kanzaki H
    Saudi J Biol Sci; 2018 May; 25(4):642-650. PubMed ID: 29740228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient secreted production of (R)-3-hydroxybutyric acid from living Halomonas sp. KM-1 under successive aerobic and microaerobic conditions.
    Kawata Y; Kawasaki K; Shigeri Y
    Appl Microbiol Biotechnol; 2012 Nov; 96(4):913-20. PubMed ID: 22718250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Composition and content of cytochromes in Rhodopseudomonas palustris in relation to growth conditions].
    Ivanovskiĭ RN; Rodova NA
    Mikrobiologiia; 1975; 44(1):16-20. PubMed ID: 169455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli.
    Qin G; Lin J; Liu X; Cen P
    J Biosci Bioeng; 2006 Oct; 102(4):316-22. PubMed ID: 17116578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradation kinetics of high strength oily pet food wastewater in a membrane-coupled bioreactor (MBR).
    Kurian R; Nakhla G; Bassi A
    Chemosphere; 2006 Nov; 65(7):1204-11. PubMed ID: 16697028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of Influencing Factors on Biomass Accumulation and 5-Aminolevulinic Acid (ALA) Yield in Rhodobacter sphaeroides Wastewater Treatment.
    Liu S; Li X; Zhang G; Zhang J
    J Microbiol Biotechnol; 2015 Nov; 25(11):1920-7. PubMed ID: 26139613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tributyl phosphate degradation by Rhodopseudomonas palustris and other photosynthetic bacteria.
    Berne C; Allainmat B; Garcia D
    Biotechnol Lett; 2005 Apr; 27(8):561-6. PubMed ID: 15973490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Dark metabolism of Rhodospeudomonas sulfidophila].
    Keppen OI; Nozhevnikova AN; Gorlenko VM
    Mikrobiologiia; 1976; 45(1):15-9. PubMed ID: 940488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of Biomass and 5-Aminolevulinic Acid Production by Rhodobacter sphaeroides ATCC17023 via Response Surface Methodology.
    Liu S; Zhang G; Li J; Li X; Zhang J
    Appl Biochem Biotechnol; 2016 Jun; 179(3):444-58. PubMed ID: 26875086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor.
    Wang YZ; Liao Q; Zhu X; Tian X; Zhang C
    Bioresour Technol; 2010 Jun; 101(11):4034-41. PubMed ID: 20137910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Hydrogen photoproduction from acetate by Rhodopseudomonas palustris].
    Yang SP; Zhao CG; Liu RT; Qu YB; Qian XM
    Sheng Wu Gong Cheng Xue Bao; 2002 Jul; 18(4):486-91. PubMed ID: 12385249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Green energy from Rhodopseudomonas palustris grown at low to high irradiance values, under fed-batch operational conditions.
    Carlozzi P; Pintucci C; Piccardi R; Buccioni A; Minieri S; Lambardi M
    Biotechnol Lett; 2010 Apr; 32(4):477-81. PubMed ID: 20013301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a low-cost culture medium for the rapid production of plant growth-promoting Rhodopseudomonas palustris strain PS3.
    Lo KJ; Lee SK; Liu CT
    PLoS One; 2020; 15(7):e0236739. PubMed ID: 32730333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous production of succinic acid using an external membrane cell recycle system.
    Kim MI; Kim NJ; Shang L; Chang YK; Lee SY; Chang HN
    J Microbiol Biotechnol; 2009 Nov; 19(11):1369-73. PubMed ID: 19996689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. D-glucose enhanced 5-aminolevulinic acid production in recombinant Escherichia coli culture.
    Liu XX; Wang L; Wang YJ; Cai LL
    Appl Biochem Biotechnol; 2010 Mar; 160(3):822-30. PubMed ID: 19381488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.