These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21354094)

  • 61. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering.
    Hwang CM; Khademhosseini A; Park Y; Sun K; Lee SH
    Langmuir; 2008 Jun; 24(13):6845-51. PubMed ID: 18512874
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Single-molecule spectroscopy using microfluidic platforms.
    Kim S; Zare RN
    Methods Enzymol; 2010; 472():119-32. PubMed ID: 20580962
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries.
    Campbell LC; Wilkinson MJ; Manz A; Camilleri P; Humphreys CJ
    Lab Chip; 2004 Jun; 4(3):225-9. PubMed ID: 15159783
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Recreating Physiological Environments In Vitro: Design Rules for Microfluidic-Based Vascularized Tissue Constructs.
    Tan SY; Leung Z; Wu AR
    Small; 2020 Mar; 16(9):e1905055. PubMed ID: 31913580
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Promises, challenges and future directions of microCCAs.
    Esch MB; Sung JH; Shuler ML
    J Biotechnol; 2010 Jul; 148(1):64-9. PubMed ID: 20193719
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Microfluidic high viability neural cell separation using viscoelastically tuned hydrodynamic spreading.
    Wu Z; Hjort K; Wicher G; Fex Svenningsen A
    Biomed Microdevices; 2008 Oct; 10(5):631-8. PubMed ID: 18461460
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Development of Microfluidic Systems for Fabricating Cellular Multilayers.
    Matsuura K; Sugimoto I; Kuroda Y; Kadowaki K; Matsusaki M; Akashi M
    Anal Sci; 2016; 32(11):1171-1176. PubMed ID: 27829621
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sperm motion in a microfluidic fertilization device.
    Lopez-Garcia MD; Monson RL; Haubert K; Wheeler MB; Beebe DJ
    Biomed Microdevices; 2008 Oct; 10(5):709-18. PubMed ID: 18454318
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Electroporation of cells in microfluidic droplets.
    Zhan Y; Wang J; Bao N; Lu C
    Anal Chem; 2009 Mar; 81(5):2027-31. PubMed ID: 19199389
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Synthesis of cell-laden alginate hollow fibers using microfluidic chips and microvascularized tissue-engineering applications.
    Lee KH; Shin SJ; Park Y; Lee SH
    Small; 2009 Jun; 5(11):1264-8. PubMed ID: 19296560
    [No Abstract]   [Full Text] [Related]  

  • 73. Microfluids: clicks and chips.
    Finkelstein JM
    Nature; 2006 Jul; 442(7100):254. PubMed ID: 16855575
    [No Abstract]   [Full Text] [Related]  

  • 74. Bio-electrosprays: the development of a promising tool for regenerative and therapeutic medicine.
    Jayasinghe SN
    Biotechnol J; 2007 Aug; 2(8):934-7. PubMed ID: 17582825
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Parallel microfluidic networks for studying cellular response to chemical modulation.
    Liu D; Wang L; Zhong R; Li B; Ye N; Liu X; Lin B
    J Biotechnol; 2007 Sep; 131(3):286-92. PubMed ID: 17706314
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Aerodynamically assisted bio-jetting of hematopoietic stem cells.
    Griessinger E; Jayasinghe SN; Bonnet D
    Analyst; 2012 Mar; 137(6):1329-33. PubMed ID: 22297267
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fluid movement.
    Manuel J
    Environ Health Perspect; 2006 Dec; 114(12):A710-3. PubMed ID: 17185265
    [No Abstract]   [Full Text] [Related]  

  • 78. Microfluidic platforms for the investigation of intercellular signalling mechanisms.
    Nahavandi S; Tang SY; Baratchi S; Soffe R; Nahavandi S; Kalantar-zadeh K; Mitchell A; Khoshmanesh K
    Small; 2014 Dec; 10(23):4810-26. PubMed ID: 25238429
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Engineering in vitro complex pathophysiologies for drug discovery purposes.
    Gaspar D; Zeugolis DI
    Drug Discov Today; 2016 Sep; 21(9):1341-1344. PubMed ID: 27566484
    [No Abstract]   [Full Text] [Related]  

  • 80. Organ-on-a-chip technology and microfluidic whole-body models for pharmacokinetic drug toxicity screening.
    Lee JB; Sung JH
    Biotechnol J; 2013 Nov; 8(11):1258-66. PubMed ID: 24038956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.