These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21354094)

  • 81. Organ-on-a-chip technology and microfluidic whole-body models for pharmacokinetic drug toxicity screening.
    Lee JB; Sung JH
    Biotechnol J; 2013 Nov; 8(11):1258-66. PubMed ID: 24038956
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Biomimetic cardiac microsystems for pathophysiological studies and drug screens.
    Lee J; Razu ME; Wang X; Lacerda C; Kim JJ
    J Lab Autom; 2015 Apr; 20(2):96-106. PubMed ID: 25524490
    [TBL] [Abstract][Full Text] [Related]  

  • 83. High-density self-contained microfluidic KOALA kits for use by everyone.
    Guckenberger DJ; Berthier E; Beebe DJ
    J Lab Autom; 2015 Apr; 20(2):146-53. PubMed ID: 25424385
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Microfluidics for drug discovery and development: from target selection to product lifecycle management.
    Kang L; Chung BG; Langer R; Khademhosseini A
    Drug Discov Today; 2008 Jan; 13(1-2):1-13. PubMed ID: 18190858
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Increasingly microphysiological models.
    Nat Biomed Eng; 2019 Jul; 3(7):491-492. PubMed ID: 31278390
    [No Abstract]   [Full Text] [Related]  

  • 86. Shear-driven flow approaches to LC and macromolecular separations.
    Clicq D; Pappaert K; Vankrunkelsven S; Vervoort N; Baron GV; Desmet G
    Anal Chem; 2004 Dec; 76(23):430A-438A. PubMed ID: 15595184
    [No Abstract]   [Full Text] [Related]  

  • 87. Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment.
    Tsai HF; Trubelja A; Shen AQ; Bao G
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28637915
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Vascularized microfluidic organ-chips for drug screening, disease models and tissue engineering.
    Osaki T; Sivathanu V; Kamm RD
    Curr Opin Biotechnol; 2018 Aug; 52():116-123. PubMed ID: 29656237
    [TBL] [Abstract][Full Text] [Related]  

  • 89. On-Chip Construction of Liver Lobule-like Microtissue and Its Application for Adverse Drug Reaction Assay.
    Ma C; Zhao L; Zhou EM; Xu J; Shen S; Wang J
    Anal Chem; 2016 Feb; 88(3):1719-27. PubMed ID: 26743823
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Microfluidics: Exploiting elephants in the room.
    Wootton RC; Demello AJ
    Nature; 2010 Apr; 464(7290):839-40. PubMed ID: 20376138
    [No Abstract]   [Full Text] [Related]  

  • 91. Analysis of Tooth Innervation in Microfluidic Coculture Devices.
    Pagella P; Mitsiadis TA
    Methods Mol Biol; 2020; 2155():99-106. PubMed ID: 32474870
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres.
    Kang E; Jeong GS; Choi YY; Lee KH; Khademhosseini A; Lee SH
    Nat Mater; 2011 Sep; 10(11):877-83. PubMed ID: 21892177
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Bioengineering. Lung-on-a-chip breathes new life into drug discovery.
    Service RF
    Science; 2012 Nov; 338(6108):731. PubMed ID: 23139305
    [No Abstract]   [Full Text] [Related]  

  • 94. Q&A: what can microfluidics do for stem-cell research?
    Csete M
    J Biol; 2010; 9(1):1. PubMed ID: 20478011
    [No Abstract]   [Full Text] [Related]  

  • 95. Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models.
    Carvalho MR; Lima D; Reis RL; Correlo VM; Oliveira JM
    Trends Biotechnol; 2015 Nov; 33(11):667-678. PubMed ID: 26603572
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Microfluidics: reframing biological enquiry.
    Duncombe TA; Tentori AM; Herr AE
    Nat Rev Mol Cell Biol; 2015 Sep; 16(9):554-67. PubMed ID: 26296163
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning.
    Fang Y; Frampton JP; Raghavan S; Sabahi-Kaviani R; Luker G; Deng CX; Takayama S
    Tissue Eng Part C Methods; 2012 Sep; 18(9):647-57. PubMed ID: 22356298
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Microfluidic Flow Cell Array for Controlled Cell Deposition in Engineered Musculoskeletal Tissues.
    Ede D; Davidoff N; Blitch A; Farhang N; Bowles RD
    Tissue Eng Part C Methods; 2018 Sep; 24(9):546-556. PubMed ID: 30101691
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Microfluidic Tissue Engineering and Bio-Actuation.
    Filippi M; Buchner T; Yasa O; Weirich S; Katzschmann RK
    Adv Mater; 2022 Jun; 34(23):e2108427. PubMed ID: 35194852
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Diving into droplets.
    Mukhopadhyay R
    Anal Chem; 2006 Mar; 78(5):1401-4. PubMed ID: 16570390
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.