These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 21354103)
41. Axoplasmic flow in axonal neuropathies. II. Axoplasmic flow in mice with motor neuron disease and muscular dystrophy. Bradley WG; Jaros E Brain; 1973 Jun; 96(2):247-58. PubMed ID: 4123667 [No Abstract] [Full Text] [Related]
42. Comparative effects of progesterone and the synthetic progestin norethindrone on neuroprotection in a model of spontaneous motoneuron degeneration. Gargiulo-Monachelli G; Meyer M; Lara A; Garay L; Lima A; Roig P; De Nicola AF; Gonzalez Deniselle MC J Steroid Biochem Mol Biol; 2019 Sep; 192():105385. PubMed ID: 31150830 [TBL] [Abstract][Full Text] [Related]
43. Subproteomic analysis of basic proteins in aged skeletal muscle following offgel pre-fractionation. Gannon J; Ohlendieck K Mol Med Rep; 2012 Apr; 5(4):993-1000. PubMed ID: 22267262 [TBL] [Abstract][Full Text] [Related]
44. Deep proteomic evaluation of primary and cell line motoneuron disease models delineates major differences in neuronal characteristics. Hornburg D; Drepper C; Butter F; Meissner F; Sendtner M; Mann M Mol Cell Proteomics; 2014 Dec; 13(12):3410-20. PubMed ID: 25193168 [TBL] [Abstract][Full Text] [Related]
45. Role of skeletal muscle in the epigenetic shaping of motor neuron fate choices. Angka HE; Kablar B Histol Histopathol; 2009 Dec; 24(12):1579-92. PubMed ID: 19795356 [TBL] [Abstract][Full Text] [Related]
46. The fine structure of the cervical spinal cord, ventral root and brachial nerves in the wobbler (wr) mouse. Andrews JM J Neuropathol Exp Neurol; 1975 Jan; 34(1):12-27. PubMed ID: 1117319 [TBL] [Abstract][Full Text] [Related]
48. Animal models of amyotrophic lateral sclerosis and the spinal muscular atrophies. Sillevis Smitt PA; de Jong JM J Neurol Sci; 1989 Jul; 91(3):231-58. PubMed ID: 2671267 [TBL] [Abstract][Full Text] [Related]
49. Caffeine and NAD Zwilling M; Theiss C; Matschke V Antioxidants (Basel); 2020 May; 9(6):. PubMed ID: 32471290 [TBL] [Abstract][Full Text] [Related]
50. Lead concentration in skeletal muscle in amyotrophic lateral sclerosis patients and control subjects. Conradi S; Ronnevi LO; Vesterberg O J Neurol Neurosurg Psychiatry; 1978 Nov; 41(11):1001-4. PubMed ID: 81872 [TBL] [Abstract][Full Text] [Related]
51. Unmasking the silent motor neuron loss in amyotrophic lateral sclerosis. Neuwirth C; Weber M Muscle Nerve; 2018 Aug; 58(2):184-185. PubMed ID: 29572875 [No Abstract] [Full Text] [Related]
52. Expression of Nogo-A in human muscle fibers is not specific for amyotrophic lateral sclerosis. Askanas V; Wojcik S; Engel WK Ann Neurol; 2007 Dec; 62(6):676-7; author reply 677. PubMed ID: 17894379 [No Abstract] [Full Text] [Related]
53. Proteomic serum biomarkers for neuromuscular diseases. Murphy S; Zweyer M; Mundegar RR; Swandulla D; Ohlendieck K Expert Rev Proteomics; 2018 Mar; 15(3):277-291. PubMed ID: 29338453 [TBL] [Abstract][Full Text] [Related]
54. FUScinating insights into motor neuron degeneration. Dormann D EMBO J; 2016 May; 35(10):1015-7. PubMed ID: 27053723 [TBL] [Abstract][Full Text] [Related]
55. Muscle Nogo-A: a marker for amyotrophic lateral sclerosis or for denervation? Tågerud S; Libelius R; Magnusson C Ann Neurol; 2007 Dec; 62(6):676. PubMed ID: 17702029 [No Abstract] [Full Text] [Related]
56. The role of skeletal muscle in amyotrophic lateral sclerosis: a 'dying-back' or 'dying-forward' phenomenon? Tsitkanou S; Lindsay A; Della Gatta P J Physiol; 2019 Dec; 597(23):5527-5528. PubMed ID: 31605390 [No Abstract] [Full Text] [Related]
57. Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function. Molendijk J; Blazev R; Mills RJ; Ng YK; Watt KI; Chau D; Gregorevic P; Crouch PJ; Hilton JBW; Lisowski L; Zhang P; Reue K; Lusis AJ; Hudson JE; James DE; Seldin MM; Parker BL Elife; 2022 Dec; 11():. PubMed ID: 36472367 [TBL] [Abstract][Full Text] [Related]