BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21354323)

  • 1. An in vivo data-driven framework for classification and quantification of enzyme kinetics and determination of apparent thermodynamic data.
    Canelas AB; Ras C; ten Pierick A; van Gulik WM; Heijnen JJ
    Metab Eng; 2011 May; 13(3):294-306. PubMed ID: 21354323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models.
    Cotten C; Reed JL
    BMC Bioinformatics; 2013 Jan; 14():32. PubMed ID: 23360254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
    Khodayari A; Zomorrodi AR; Liao JC; Maranas CD
    Metab Eng; 2014 Sep; 25():50-62. PubMed ID: 24928774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathway thermodynamics highlights kinetic obstacles in central metabolism.
    Noor E; Bar-Even A; Flamholz A; Reznik E; Liebermeister W; Milo R
    PLoS Comput Biol; 2014 Feb; 10(2):e1003483. PubMed ID: 24586134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale.
    Famili I; Mahadevan R; Palsson BO
    Biophys J; 2005 Mar; 88(3):1616-25. PubMed ID: 15626710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo kinetics of primary metabolism in Saccharomyces cerevisiae studied through prolonged chemostat cultivation.
    Wu L; Mashego MR; Proell AM; Vinke JL; Ras C; van Dam J; van Winden WA; van Gulik WM; Heijnen JJ
    Metab Eng; 2006 Mar; 8(2):160-71. PubMed ID: 16233984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage.
    Park JO; Rubin SA; Xu YF; Amador-Noguez D; Fan J; Shlomi T; Rabinowitz JD
    Nat Chem Biol; 2016 Jul; 12(7):482-9. PubMed ID: 27159581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data.
    Kümmel A; Panke S; Heinemann M
    Mol Syst Biol; 2006; 2():2006.0034. PubMed ID: 16788595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New experimental and theoretical tools for metabolic engineering of micro-organisms.
    Heijnen JJ
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):11-30. PubMed ID: 15954559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Synthetic Biology Strategies for Adipic Acid Production: An in Silico Tool for Combined Thermodynamics and Stoichiometric Analysis of Metabolic Networks.
    Averesch NJH; Martínez VS; Nielsen LK; Krömer JO
    ACS Synth Biol; 2018 Feb; 7(2):490-509. PubMed ID: 29237121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.
    Fleming RM; Thiele I; Provan G; Nasheuer HP
    J Theor Biol; 2010 Jun; 264(3):683-92. PubMed ID: 20230840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry.
    Teusink B; Passarge J; Reijenga CA; Esgalhado E; van der Weijden CC; Schepper M; Walsh MC; Bakker BM; van Dam K; Westerhoff HV; Snoep JL
    Eur J Biochem; 2000 Sep; 267(17):5313-29. PubMed ID: 10951190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of two Saccharomyces cerevisiae strains with kinetic models at genome-scale.
    Hu M; Dinh HV; Shen Y; Suthers PF; Foster CJ; Call CM; Ye X; Pratas J; Fatma Z; Zhao H; Rabinowitz JD; Maranas CD
    Metab Eng; 2023 Mar; 76():1-17. PubMed ID: 36603705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics.
    Visser D; Schmid JW; Mauch K; Reuss M; Heijnen JJ
    Metab Eng; 2004 Oct; 6(4):378-90. PubMed ID: 15491866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic constraints on the assembly and diversity of microbial ecosystems are different near to and far from equilibrium.
    Cook J; Pawar S; Endres RG
    PLoS Comput Biol; 2021 Dec; 17(12):e1009643. PubMed ID: 34860834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of rate law approximations in bottom-up kinetic models of metabolism.
    Du B; Zielinski DC; Kavvas ES; Dräger A; Tan J; Zhang Z; Ruggiero KE; Arzumanyan GA; Palsson BO
    BMC Syst Biol; 2016 Jun; 10(1):40. PubMed ID: 27266508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature dependence of the rate constants of the Escherichia coli RNA polymerase-lambda PR promoter interaction. Assignment of the kinetic steps corresponding to protein conformational change and DNA opening.
    Roe JH; Burgess RR; Record MT
    J Mol Biol; 1985 Aug; 184(3):441-53. PubMed ID: 3900414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.