BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 21354324)

  • 1. Comparative pathology of bacteria in the genus Providencia to a natural host, Drosophila melanogaster.
    Galac MR; Lazzaro BP
    Microbes Infect; 2011 Jul; 13(7):673-83. PubMed ID: 21354324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genomics of bacteria in the genus Providencia isolated from wild Drosophila melanogaster.
    Galac MR; Lazzaro BP
    BMC Genomics; 2012 Nov; 13():612. PubMed ID: 23145767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reciprocal analysis of Francisella novicida infections of a Drosophila melanogaster model reveal host-pathogen conflicts mediated by reactive oxygen and imd-regulated innate immune response.
    Moule MG; Monack DM; Schneider DS
    PLoS Pathog; 2010 Aug; 6(8):e1001065. PubMed ID: 20865166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Providencia sneebia sp. nov. and Providencia burhodogranariea sp. nov., isolated from wild Drosophila melanogaster.
    Juneja P; Lazzaro BP
    Int J Syst Evol Microbiol; 2009 May; 59(Pt 5):1108-11. PubMed ID: 19406801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipopolysaccharide -mediated resistance to host antimicrobial peptides and hemocyte-derived reactive-oxygen species are the major Providencia alcalifaciens virulence factors in Drosophila melanogaster.
    Shaka M; Arias-Rojas A; Hrdina A; Frahm D; Iatsenko I
    PLoS Pathog; 2022 Sep; 18(9):e1010825. PubMed ID: 36084158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid seasonal evolution in innate immunity of wild
    Behrman EL; Howick VM; Kapun M; Staubach F; Bergland AO; Petrov DA; Lazzaro BP; Schmidt PS
    Proc Biol Sci; 2018 Jan; 285(1870):. PubMed ID: 29321302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic variation in Drosophila melanogaster resistance to infection: a comparison across bacteria.
    Lazzaro BP; Sackton TB; Clark AG
    Genetics; 2006 Nov; 174(3):1539-54. PubMed ID: 16888344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression on the fly: A transcriptome-level view of Drosophila's immune response to the opportunistic fungal pathogen Aspergillus flavus.
    Ramírez-Camejo LA; Bayman P
    Infect Genet Evol; 2020 Aug; 82():104308. PubMed ID: 32240802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Female and male genetic contributions to post-mating immune defence in female Drosophila melanogaster.
    Short SM; Lazzaro BP
    Proc Biol Sci; 2010 Dec; 277(1700):3649-57. PubMed ID: 20573620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. No effect of Wolbachia on resistance to intracellular infection by pathogenic bacteria in Drosophila melanogaster.
    Rottschaefer SM; Lazzaro BP
    PLoS One; 2012; 7(7):e40500. PubMed ID: 22808174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecology-relevant bacteria drive the evolution of host antimicrobial peptides in
    Hanson MA; Grollmus L; Lemaitre B
    Science; 2023 Jul; 381(6655):eadg5725. PubMed ID: 37471548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative transcriptomics reveals CrebA as a novel regulator of infection tolerance in D. melanogaster.
    Troha K; Im JH; Revah J; Lazzaro BP; Buchon N
    PLoS Pathog; 2018 Feb; 14(2):e1006847. PubMed ID: 29394281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IMD-mediated innate immune priming increases Drosophila survival and reduces pathogen transmission.
    Prakash A; Fenner F; Shit B; Salminen TS; Monteith KM; Khan I; Vale PF
    PLoS Pathog; 2024 Jun; 20(6):e1012308. PubMed ID: 38857285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Toll pathway underlies host sexual dimorphism in resistance to both Gram-negative and Gram-positive bacteria in mated Drosophila.
    Duneau DF; Kondolf HC; Im JH; Ortiz GA; Chow C; Fox MA; Eugénio AT; Revah J; Buchon N; Lazzaro BP
    BMC Biol; 2017 Dec; 15(1):124. PubMed ID: 29268741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular infections in Drosophila melanogaster: host defense and mechanisms of pathogenesis.
    Péan CB; Dionne MS
    Dev Comp Immunol; 2014 Jan; 42(1):57-66. PubMed ID: 23648644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systemic bacterial infection and immune defense phenotypes in Drosophila melanogaster.
    Khalil S; Jacobson E; Chambers MC; Lazzaro BP
    J Vis Exp; 2015 May; (99):e52613. PubMed ID: 25992475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-exposure to non-pathogenic bacteria does not protect Drosophila against the entomopathogenic bacterium Photorhabdus.
    Patrnogic J; Castillo JC; Shokal U; Yadav S; Kenney E; Heryanto C; Ozakman Y; Eleftherianos I
    PLoS One; 2018; 13(10):e0205256. PubMed ID: 30379824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The complex contributions of genetics and nutrition to immunity in Drosophila melanogaster.
    Unckless RL; Rottschaefer SM; Lazzaro BP
    PLoS Genet; 2015 Mar; 11(3):e1005030. PubMed ID: 25764027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolutionary costs of immunological maintenance and deployment.
    McKean KA; Yourth CP; Lazzaro BP; Clark AG
    BMC Evol Biol; 2008 Mar; 8():76. PubMed ID: 18315877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immune interactions between Drosophila and the pathogen Xenorhabdus.
    Ozakman Y; Eleftherianos I
    Microbiol Res; 2020 Nov; 240():126568. PubMed ID: 32781380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.